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ABSTRACT

This thesis develops methods of frequency analysis and synthesis
of digital computer programs describable in the form of a linear difference
equation with constant coefficients.

The mainspring of this investigation was the need for dealing
with control systems consisting of both analog and digital filters.

Most conventional control systems consist ¢f analog units and operate

on continuous data, but digital computers use sampled data. A uniform
treatment of the two types of data is essenti;l in the analysis of control
systems incorporatiﬁg a digital computer. The conventional method of
treating systems operaéing on only continuous data uses Fourier or Laplace
transformationy that is, transformation to the frequency domain. The
conventional method of treating digital programs is numerical analysis, which
deals almost exclusively in the domain of the independent variable; that
is, the time domein. By exploiting and further developing those areas of
numerical analysis to which frequency-transformation techni¢ues were
applied, the thesis points the way to a common language of dealing with a
mixed-data system.

If data‘are sampled. at equal intervals of time (a practical
feature), description of a linear computer program always reduces to a
difference equation. It is possible to describe such a program by a transfer
function in the frequency domain in a manner ana}ogous to the conventional
description of analog filters. Whereas components using continuous data

have transfer functions which are rational’ functions of the complex frequency

i1
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variable g, those of a digital program are rational functions of % = e-sr,
where e is the Naperian base and T is the constant interval of sampling.
Having described the digital computer with its program by a
transfer function, one may apply all the techniques of complex-variable
and transform theory to deal with digital filters. Theorems on realizability,
stability and other properties of programs are developed, and the amplitude,
phase and locus of a program are defined. The adaptation of the methods
of analog filters to digital ones is direct, although the necessary
modifications are often significant.
The synthesis of computer programs can be conducted along lines
employed in the synthesis of networks. First, the desired frequency charac=-

teristics of the program are stated; next, a rational function of

z = e-ST is found which approximates the desired characteristics for real
frequencies, s = jw; finally, the program is realized on basis of the
approximating transfer function. For facilitating the approximation
basic entities or blocks of programs are analysed and methods are shown
by which such programming units can be combined to obtain the frequency
characteristics of the complete program. Various methods of program
realization, that is, programming, are developed and compared on the
basis of time and storage requirements, and criteria are developed to
permit the choice of the optimum programmning procedure by considering

the mere form of the program transfer function.

Numerous examples of program analysis and synthesis are shown,
and one example of synthesizing a program for the compensation of a control
system is worked out. The latter example shows that the frequency analysis

;' of a complete hybrid system can be undertaken along the conventional lines

and that digital compensation of & control system is possible.
iv
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The application of the methods of the thesis to various problems
in numerical analysis is also shown. The problems of convergence (stability) -
and of truncation errors (approximation) can be analyzed in the'frequency
domain effectively. The study of convergence py conformal mapping is related
to the usual methods, and a novel way of estimating truncation error is
shown provided only that the function to which the numerical process is

applied can be described by its frequency spectrum.
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INTRODUCTION

" The use of digital computers in control systems is now coming
into the fore. Unlike most conventional control systems involving analog
units which operate on continuous data, a control system employing a
digital computer of the present-day type must use sampled data in the
part of the system involving the digital computer. Hence, some parts
of this system use continuous data and others, sampled data. The Fourier
and Laplace transform methods of analysing continuous-data control systems
is well-known and developed, but the conventional treatment of digital
computer programs is by numerical apalysis or in the time domain, There=-
fore, in order to apply the methods of frequency analysis to control
systems involving digital computers (mixed-data systems), the sampled
data part of the system must be described in the frequency domain, Some
work along these lines has been done but it must be further developed.,

An analog system is a physical model of a set of differential

equationsy whereas, a digital system is a physical model of a set of
difference equations. Operational and transform methods have been applied
to difference equations for some time. In 1942 Gardner and Barnest
presented a comprehensive and systematic treatment of the solution of
linear difference equations with constant coefficients by the Laplace

transform method. However, they do not deal with stability and errors

1 Gerdner and Barnes, Transients in Linear Systems, John Wiley and Sons
New York, 1942, Chapter IX.
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which are important in control applications. The control point of view

is stressed in Tustin'sl work on time sequences, In 1949 and 1950 Tustin's
method was further developed by Madwed'z, who shows the relations of his
aspects of stability, but they do not analyze the errors associated with
their approximations,

In the meantime, Hurewicz3

ploneered the analysis of pulsed
filters in the frequency domain, developed stability criteria, and
showed several examples of choosing parameters, It should be noted,
however, that Hurewicz's filters are only simple units such as differ-
entiators and lead networks, which are incapable of performing involved
computations as a computer can. Also, Hurewicz evaluates the output of a
pulsed filter at the sampling instants only. The behavior of the filter

between pulses remains a separate problem, and no ready methal is pre-

sented to inwastigate the whole question in the frequency domain.

W. K. Linvillh

shows that sampling a continuous function is
equivalent to the modulation of a series of unit impulses by the function.
The result is a new time function which can be thought of as being applied
to the sampled data part cf the system., Furthermore, this new time
function has a Laplace transformj thus a frequency-domain analysis is

possible, Linvill shows that reconversion from discontinuous to continuous

Tustin, A Method of Analysing the Behavior of Linear Systems in
mms Of—'.ﬁ.m S:eries, J.Io ° Velg 91‘», Pal‘t 2A’#1, pp. 130 - lh2.

Madwed, Number Series Method of Solving Linear and Non-Linear
Differential Equations, SC.D. thesis in Mechanical Engineering, MIT,

3 Hurewicz, Filters and Servo Systems with Pulsed Data, Chapter 5 of
‘James, Nichols and Phillips, Theory of Servomechanisms.,

4 Linvill, W.K., Analysis and Design of Sampled-Data Control Systems,
Digital Computer Laboratory, MIT, Report R-170.
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data is a filtering process and also shows what happens when the loop
is closed on a mixed data system. He is concerned only with the effect
of sampling on the system and des not consider the influence of digital
computer operations on the system,

This report is a summary of the work done by Salzerl. His
results permit the analysis of linear digital computer programs in the
frequency domainj i.e,, the operation of a digital computer program is
described by a transfer function. Thus the field is opened for the
complete analysis and synthesis, wholly in the frequency domain, of control
systems employing digital computers,

From the frequency-domain point of view, conditions governing
the realizability of program transfer functions are developed, the problem
of stability is studied, and conditions to insure stability are given.
Three methods of realization of programs from their transfer functions are
presented, and the time and storage requirements of each are studied. An
elementary example of transfer function synthesis is given, As in the case
of network theory, the analysis of a computer program in the frequency domain
is straightforward with a unique result, but the synthesis of a transfer
function has many alternate realizations. Also as in network theory, the
characteristics of the transfer function to be realized may not be given
directly in a form leading to immediate realization but an intermediate
approximation problem may need to be solved, The background for solving

the approximation problem has been set up in that conditions of physical

i

Salzer, J.M., Treatment of Digital Control Systems and Numerical Processes
in the Frequency Domaln, SC.D. thesis in E%ecﬁcd Engineering
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realizability have been derived and methods of realization of all
realizable transfer functions have beem obtained, While some work has
been done directly on the approximation problem, much remains to be done
in this respect.

The function of this report is to provide a concise picture
of the frequency analysis of digital control systems and numerical pro-
cesses, The first chapter describes the processes of sampling and de-
sampling continuous functions and indicates that sampling is analagous
to impulse modulation. while desampling is analagous to ripple filtering
in demodulation, Thinking of sampling as impulse modulation allows one
to relate the sampled to the continuous function in either the frequency
domain or the time domain. Furthermore, thinking of sampled functions
as impulse modulated functions allows one to characterize linear computer
operations on the sampled functions by transfer functions,

Chapter II derives the conditions of physical realizability
for caomputer-program transfer functions, discusses stabdlity conditions
on these transfer functions, and presents procedures for plotting transfer
loci.

Chapter III deals with techniques for realization of transfer
functions with some attention to the approximation problem, while Chapter
IV deals with f:equency analysis of some numerical integration formulas,
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CHAPTER 1

DESCRIPTION OF THE SAMPLING PROCESS

l.1 Sampling a Continuous Function

A digital computer operates on numbers that represent samples of
continuous signals taken at discrete instants of time. The time interwval,
T, between samples is a constant as shown in Figure 1,1, page 7 . In this
case, the input to the computer is the sampled function, I (t)., The com-
puter senses the amplitude of each of these pulses (as a number) and
operates on the number,

The purpose of this chapter is to describe the sampling process,
to characterize it mamem'tically, to evaluate how well a continuous signal
may be represented by its samples, and to show how and under what conditions
a continuous signal may be recovered from its samples,

The mathematical model of the sampling process which will be de-
rived later is very similar to actual physical processes. For example,
assume that i (t) is the voltage across a pair of terminals of some net-
work, How might it be sampled? The voltage may be sampled by connecting
a condenser across the terminals, allowing a current flow to build up a
charge on the condenser until the condenser voltage is equal to the terminal
voltage, and then disconnecting the condenser. In order that the condenser
voltage be equal to the terminal voltage at some‘ instant of time, the
sampling time should be as small as possible., It may be made very small, but
not zero., The total charge on the condenser is the integral of the curreat

a



Report R-225 b6~
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flow:lr;g t;vex; 't;he tim required t:o take t;hé samﬁie; Thﬁa; a:s the
sampling time decreases, the current intensity must increase.
Physically this is how sampling might be done, Ideally, however,

we wish to take the sample instantaneously or in zero time. Therefore,

for ideal sampling in the above example the current flow must be infinite

for zero time at each sampling instant, Thus, in the ideal case the
charging current is an impulse whose area equals the amount of charge
required to build up the condenser to the sampled value. Physically,
ideal sampling is not possible, but the idea permits us to set up a

model of sampling that can be treated mathematically,

1;2 Equivalent Mathematical Model of Ideal Sampling - Impulse Modulation

The ideal situation in. the above example is to transfer to the
plates of the condenser a portion of charge in zero time, or to "hit" the
condenser with an impulse of current. The same end can be obtained if we
modulate the wvoltage waveform with an infinite series of unit impulses
} ) separated by equal intervals, T, as shown in Figure 2, 'The area of any
one of the modulated impulses equals the value of the input function at the
corresponding instant of time., Thus, impulse modulation is analogous to
”‘ the process of sampling., The samples of Figure 1.1lhave finite height, zero

width, and zero areaj therefore, the sampled function does not have a Laplace

transform. The impulses of Figure 1.2° have infinite height, zero width,

1 The bar (—) over i(t) indicates the sampled functions,
- 2 The circumflex (™) over i(t) indicates the impulse - modulated function.
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Figure 1.1 Relation between continuous and sampled functions
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i Figure 1.2 Relation between continuous and impulse modulated functions.
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but non-zero areaj; therefore, the impulse-modulated function does have a

Laplace transform, which is why this mathematical model has been set up.

1.3 Use of Impulse Modulated Functions in the Analysis of Linear Digital
Computer Programs

A digital computer operates on numbers that occur at discrete
instants of time, i.e. 1t operates on samples of a continuous function,
In the previous section it was shown that for the ideal case, sampling is
equivalent to impulse modulation, If we think of the computer as "sensing"
the amplitude of samples, we may just as easily think of it as "sensing"
the area of impulses., With this extension or mathematical model, we may
analyze computer programs by describing the input to the computer as
impulses instead of samples. Since a sample does not have a Laplace trans-
form, while an impulse does, the advantage of this extension is immediately
obvious, In this mathematical model, both input and output are treated
as impulses, and both have Laplace transforms, In conventional (continucus-
data) systems, the transfer function is the ratio of the transform of the
output to that of the input. Since both input and output of computer
programs (when treated as impulse-modulated functions) have transforms,
we n;ay define the transfer function of a linear computer program as the
ratio of the transform of its output to the transform of its input. In order
to carry out this analysis, we must have a knowledge of some of the properties
of impulse-modulated functions, or impulsed functions. The remainder
of this chapter is devoted to a discussion of soms of these more useful

properties,
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1,4 Laplace Transforms of Impulse-Modulated Functionsl

Our analysis of computer programs is restricted to the cases in
which the time interval between samples is a constant, T. Thus, the
impulsed function can be expressed as the product of a continuous input
function and an infinite string of unit impulses, the interval between
impulses being T.

As the following derivation will show, the process of impulse
modulation may be readily described in the frequency domain. Essentially,
since the string of unit fmpulses (which is the carrier) has all harmonics
of equal amplitude, the impulse modulated wave has an infinite number of
side~-bands rather than just the two which are present for a sinusoidal
carrier, The method of the derivation is to'make a.Féurier analysis of
the carrier and to associate each side-band of the impulse modulated wave
with a Fourier component of the carrier. Let i(t) be the continuous input
function and E———aq p(t - kT) be the infinite string of unit impulses,
[u (x) = unit impulse occurring at x = O.] Then the jmpulse-modulated input
function is, . '

ze_
T(4) = 1(8)  Fm— (™= kD). (1-1)

To find the Laplace transform of (1-1l) let us first find the

complex Fourier series of the string of unit impulses,

= Wt-k)=3 e ginfle (1-2)

k= - m= -6»

: A more comple te derivation and diséussion of the transforms of impulse

modulated functions is given in Reference 2, page 3.
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In (1-2) ,-n- = ETL « The c'm s are the complex Fourier coefficients,

Solving for c, in the usual manner we have,

/2
¢ = [ [ = (t-k’r)} o-im Nt 4y (1-3)
L . -
SRR =
-7

By writing out a few terms of the series, (1-3) becomes,

T/2
ey = ,]1; J [ cecoeceee bt Pt = T) + u(t) + p(t + 7) x."]e-jm-ntdt
-1/2 ‘
(1-k)

Within the range of the integral, the only term inside the bracket of the

integrand that is non-zero is the term, u(t).

Thus (1-4) becomes,
T/2

Cy = % p(t) e

(1-5)
-1/2

Because of the unit impulse in the integrand, the value of the integral is

Just e'J“"n't evaluated at t = O, which is unity. Therefore,
¢, = ¥ (1-6)
and the Fourier series of a string of unit impulses is,
el R el e
k = -

m= =

AP TS o T S

PR —
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Then the impulsed function becomes,

T = 4 - oIn Lt (1-8)

M= - e

Now take the Laplace transform of the above equation.

"(s) = i(t) [—§-l > nit ) - (1-9)

The indicated sunmmation can be done after the transformation is made,

Y(s) = > L [i(t) ejm‘m‘] (1-10)

me= =a9

3~

A fundamental theorém in Laplace transform theory leads directly to the

——
ot

following result:

X (s) =% i‘_I (s + jmfL) ‘ -~ (1-11)

M= ~ =0
Thus we see that the Laplace transform of an impulsed function is periodic
having a repetition interval of ij.
An important fact about I (s) should be observed from (1-11). It
is that there is a unique correspondence between I (s) and? (s) if and
only if the frequency spectrum of i(t), the continuous time function, lies

in the range, -'%‘(m(‘g'; If the spectrum of i(t) lies outside this

' range, ,‘I’(a) will specify the spectrum (in the range -'%‘(m('?’) of a
continuous time function, but this time function will differ from the
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1T( Joo)

2 ° 2 -
’ . A. Specturm of i(t)
3{\, 1T 3l
%
3 4 0 o n 3N
-3 -n -3 3 3

B. Spectrum of 1i(t)

Figure 1.3 Unique Correspondence Between I(s) and Us)
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original time function, Thus, there is a limitation of bandwidth
caused by sampling. Figure 1,3 illustrates the case of unique corres-

pondence, and Figure 1.4, the case in which the spectrum of i(t) is too
wide,

As given by (1-11),']\:’(s) consists of an infinite number of terms;
however, an infinite series is difficult to handle, and it is desirable

,\/
to have a closed form expression for I(s). This can be obtained from

Ky

8 -8,
i
of the partial fraction expansion of I(s), Referring to (1-11) we see

the partial fraction expansion of I(8). Consider a typical term,

that corresponding to this typical term,/f(s) will have a typical series of

terms of the form,

K

- 1
_T_z s -8 + Jk 1 °

k= ==

Thus we see that the pole at s = S; is repeated gh infinite number of times
at intervals of J-ﬁ-, the line through these poles being parallel to the
imaginary axis in the s - plane,

A closed form equivalent of the above typical series can be
obtained by a change of variable in the following equat:l.on.l
2

ng cotndg=1l+2 ¥

— 1
Z_—l_ ZT )
n=

1

Knopp, "Theory and Application of Infinite Series", New York, 1948, p. 419

A
i

%__
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M, (o)

)
a 0 + ﬁ o

2 2

A. Spectrum of il(t) whose spectrum is too wide for the sampling

rate.
N7
‘ 'Ii(jm)]
L I f L A —
Li L v I v L} B ®
- .é{_’- -0 -0 0 Q .0
? 2 2
B. Spectrum of Tl(t).
A
|1,(30)]
——\/’_\/—.
}- 4 -
Py 0. o
-3 +*
C. Spectrum of iz(t) that would produce the same sampled function

as (B).

Figurs 1.4 Illustration of Bandwidth Limitation Caused hy Sampling.




Divide each side of (1-12) by %, and make the change of variable, ‘i =J 9—

w cot J ']'t°°-= % - 32 j”: i;_ -922-2+n (1-13)
n= 0

Multiply both sides of (1-13) by j/N_ and obtain,

1l - . 2
Ja— oot J I coth T == + (1-1h)
IR .n: N o W 2 w2+ ne L2

The infinite series of poles of I{s) corresponding to a pole of

I(s) at s, can be put into a form that is identical to the right-hand member

i
of (1-1l) as follows: separate the term for k = O,

1 _ 1l . 1 ] 1
% 8 - si" Je D T s8-8 *i;——:—l‘f-%_-h jk.ﬁt s-si - JkSL

i
(1-15)
Combine the two terms in the summation.
1 = 2(s = s3) (1-16) )
o0
5 =5, + JEIL s-s Zt_(s-si)2+71\-2
= a0
A comparison of (1~14) and (1-16) shows that,
- ‘
1 - " n (8 -
— s-s, + k- T *® rieonl (1-17)

Thus we have the following closed form equivalent of the typical series of
I‘(s):

E & 1 Ky T |
¥ _Z 8 -8, + JkIL = -5 coth 3 (s- ﬂi): (1-18)

i

LT i e SR Ne. e e
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for a pole of I(s) at 8 = 8;« Therefore, corresponding to the partial

fraction expansions of I(s), we have the following series for¥(s).
n
~
I(s) =% z K, coth g- (s ~s),
i=1

where "n" is the total number of poles of I(s), taking into account multiple

-

poles,

Let us now investigate ths limitations on the positions of the
poles of I'(s) due to sampling. Consider an infinite strip of width .\ in
the s-plane and parallel to the real axis as shown in Figure 1.5. Assume

that d 1 the poles of I(s) lie within this strip and in the left half plane
v (LHP). Thus, I({s) has

Jw
AN
s=-plane
3% .
X 8
N o
70
X 8%
L e e r - - - e . o o o - e e m e e e = ——— —
| B i
| 5%

Figure 1.5 Infinite Strip Containing Poles of I(s)

—n— -



Report R-225 -17-

poles at these points plus poles at points shifted from the 85 's and
s#, '8 (* means conjegate) by the distance * Jk &L, Sinoce I(s) has

poles only in the strips being considered, there is a one-to-one correspondence
between the poles of I(s) and ¥(s) that lie in the same strip, However,

if I(s) had poles outside this strip, there no longer would be this one-to-one

correspondence,

e e e e e e+ ot i -

AT T g —
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CHAPTER II

TRANSFER FUNCTION OF COMPUTER PROGRAMS - REALIZABILITY AND STABILITY

Using the properties of impulse-modulated functions given in
Chapter I, we are now ready to investigate transfer functions of computer
programs. Our interest in program transfer functions is much more than
academic. The transfer function describes the program completely and
with it we can analyze and synthesize control systems employing digital
computers by conventional frequency domain methods.

In this chapter a linear digital computer program is defined in
terms of the mathematical model of sampling set up in Chapter I, its transfer
function is derived, and methods for detemining the realizability and
stability of transfer functions are given. OSeverdl examples of stability
determination are also presented.

2.1 Transfer Function of Linear, Real-Time, Digital Computer Program

As pointed out in Chapter I, the input to a digital computer
may be assumed to be an impulsed function, for purposes of mathematical
analysis. A linear program of a digital computer operating in real time
is one in which the present output is a linear function of the present

and past inputs and the past outputs. The general form of this relation

is,

B(t) = :m .k'i'(f, - kT) - E:n b, 3(t - xT), (2-1)

k=0 k=1

in which all ak's and bk's are real, and T is the time between samples.
The time required for the computation must be less than T if each

calculation is to be completed before the next input arrives.
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Taking the Laplace transform of (2-1) yields,

() = 1(s) §m . e kT _ Bs) Em b, e~keT, (2-2)

k=0 k=1

As in continuous data systems, we will define the transfer function
of a computer program as the ratio of the transform of the output
to that of the input. Let W(s) be the transfer function of a computer

programj then,

I

s)
(s)

|

W(s) = . (2-3)

L

-

Solving for D{s)/ ¥(s) from (2-2) we obtain,

S o

w(’) - 3(3) - k=0 (2°h)

ot

I(s) Zn
k=1

as the transfer function of a linear, real-time, digital computer program.

With the understanding that bo =1, (2<4) becomes,

n
=ksT

W(s) = x=0 x ° . (2-5)

n

k=0

The inverse steps from (2-5) to (2-1) are unique; therefore,
(2-5) is the general form of the transfer function of a realizable, liﬁear,
digital computer program,. Thus, to be realizable, the transfer function
of a linear, digital computer program must be expressible as the ratio of
two polynomials in e"r. The criteria for stability will be discussed in

a later section.

e
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It has already been shown that the Laplace transform, -f(a) s of
the impulsed input function is periodic of period ¥, as seen in (1-11).
By showing that W(s) is also periodic with the same period, we can prove
that ’6(8) is also periodic of period L. A typical term of either numerator
or denominator of W(s) contains e ¥5T, For s —3s + jmdL (m is a positive or

negative integer), the typical term becomes,

e-k(;s + jmﬂ)T . o-ksT =Jkm _(u'.

[N

As T{) = 27 and k and m are integers, the second factor is,

- Wl It

Hence, e-k(s + Im ()T e-ksT.

Therefore, the terms of the numerator and denominator of W(s) are periodic
of period (), and so is W(s). In equation form this means, W(s) =

W(s ¢+ jm_()), for m a positive or negative integer. The product of two
periodic functions is also periodic. Since 0(s) = W(s) T(s), W(s) is also
periodic of period (), as indeed it should because the computer output is
also sampled.

Since all the coefficients of (2-5) are real, it is readily
seen that W(s) = W(s*)*,' in which the asterisk means conjugate. For real
frequencies this becomes W(jw) = W(-jao)’. This fact together with the
periodicity of W(s) tells us that W(s) is completely specified for all s

if it is defined over the range, 0 ‘:mé‘g?

Summary: In order to be realizable, the transfer function of
a linear digital computer program must be expressible as the ratio of
polynomials in T, W(s) is periodic of perdod.) ; i.e., W(s) =
W(s ¢+ jm1L). Specification of W(s) over the range, Oém.‘_-‘g; completely
determines W(s).
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2,2 Stability of Programs

We have expressed the transfer function of computer programs as
a function of the complex frequefcy "s"; therefore, the same methods of
investigating stability as used in network analysis and servomechanisms
are'applicable. The general necessary and sufficient criterion for stability
of a unit is that its transfer function have no poles in the right half
s-plane (RHP) or multiple poles on the jw-axis. In network analysis the

frequency-domain method used to study stability is to map a contour

-

enclosing the right half of the s-plane (the contour is usually the jw-axis

. and an infinite semicircle) into the W-plane. Because of the transcendental
nature of the transfer function of a realizable computer program, the
mapping contour in the s-plane must be modified.

As we have shown before, %he transfer function of the computer

program 1is,

~ksT
&k e
W(s) =P(s) = k=0 (2-6)
Q(s) Zn:bk a-ks'r
k =0

in which P(s) is the numerator and Q(s), the denominator of W(s); and it is
assumed that P(s) and Q(s) have no common factor. Both P(s) and Q(s) are
entire transcendental functions having as their only singularity an essential
singularity at infinity.t Hence, we see that the only singularities of

W(s) in the finite s-plane are poles, and these poles occur at the zeros

of Q(s). Our stability criterion is that there be no poles of W(s) in the

RHP and only simple poles on the imaginary axis., Therefore, in corder for

t For a further discussion of entire transcendental functions, consult Knopp,

*Theory of Functions,®™ or Guillemin, "The Mathematics of Circuit Analysis.®
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the program to be stable, Q(s) must have no zeros in the RHP and only simple

geros on the jw-axis. To investigate the possibility of Q(s) having zeros

in the RHP or on the imaginary axis, we may take advantage of the periodicity

of Q(s). In proving that W(s) is periodic, it was shown that o k8T

is
periodic property. Therefore, if Q(s) has a zero in the RHP, it must have
one in the semi-inifinite strip shown in Fig. 2.1l.

Ade s=plane

e
&/

Figure 2.1 Semi-inifinite strip of s-plane that must have a zero

of Q(s) if Q(s) has any zeros in the RHP.

Consider the map of the contour of Fig. 2.1 into the e-ST plane.
Let us begin the path at the origin in the s-plane and encircle the strip
in a clockwise direction, corresponding to increasing frequency. It is
readily understood that corresponding path and enclosed region in the e"'ST
plane is shown in Fig. 2.2. The origin of the s-plane maps into the
point (1,0) in the e~oT plane. The corresponding sections of the path are
marked by small letters on both contours. In Fig. 2.2 we see that the
paths (b) und (d) cancel leaving the annular ring as the region conformal
to the strip of the s-plane that is under consideration. As 0; (ot
Fig. 2.1) approaches oo, the radius of the circular path (c) in Fig. 2.2

approaches zero. Thus, the conformal map of the indicated strip consists

of two separate contours: one, a unit circle centered at the origin



-
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)
-

o~oT -plane

unit circle

Figure 2.2 Conformal map of the semi~inifinite strip of Fig. 2.1

into the e-“' plane,

and the other an infinitesimally small circle that excludes the origin

in this particular case. Only a slight extension of the foregoing procedure

is required to determine the map of powers of e~%T. The map of e

~ksT
will appear like that of e-sr except that each of the two separate paths
will be traversed "k" timesj the region excluded by the infinitesimally
small circle will be that at the origin. Thus we see that the map of
this semi-infinite strip of the s-plane is effective in handling the
essential singularity of Q(s) at oo.

Now, consider the conformal map of the semi-infinite strip of
-aT =237

b, *

Mg. 2.1 into the Q-plane. Remembering that Q(s) = 1¢b, e 2

-nd" we see that the map of this strip into the Q-plane will

ses ¥ bn°
exclude the point (1,0), (the map of each term except the first excludes
the origin). Th:lé eliminates the need for mapping path (c). Moreover,
since the paths (b) and (d) cancel, we need to plot only the paths (a)
and (e). In other words the only part of the s-plane contour that we
need to plot in order to detemine the locus of Q(s) is the part of the

contour that 1lies on the imaginary axis. This contour in the Q-plane

will encircle the origin z-N:times in. the counterclockwise direction, where

e . T

A | S e o i



-

-« >

Report R-225 -2

g 13 the number of zeros and N is the number of poles of Q(s) (taking in%o
account their multiplicity) in this strip of the s-plane. It has already

been pointed out that Q(s) is an entire transcendental function and, therefore,
has no poles in this strip. So, N = O, and the contour in the Q-plane will
encircle the origin .Z times (clockwise is to be understood). The condition
for stability of W(s) states that Q(s) must not have any zeros in the RHP

or any multiple order zeros on the imaginary axis. Therefore, the map in

the Q-plane must not enclose the origin; Z must be zero. If Q(s) has zeros

on the imaginary axis, the Q-plane locus will pass through the origin. In
this case, we must determine the order of the zero. The following method
can be used: Assume that the locus in the Q-plane passes through the origin
for s = jo,. Then Q(s) must contain the factor (e ®T - e'dmi'r)n where

n is the order of the zero. Divide Q(s) by (e-ST - e-jmir)z. If there is
no remainder, the zero is of higher order than the first and the program
will be unstable.

In addition to determining the stability of programs, conformal
maps give an indication of the degree of stability or instability and an
approximate value of the frequency at which the program is or may become
unstable. The amount by which the locus in the Q-plane misses encircling
the origin gives a measure of the stability of the program. The farther the
locus is from the origin, the more stable or convergent the program. The
frequency corresponding to the point on the Q-plane locus neasrest the origin
is approximately the frequency at which the program is or may become unstable,
or at which it will oscillate in a damped fashion. '
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In addition to expressing the program transfer function as a function

of "s" we may also write it as a function of e"To Make the change of variable,

z =057, Then we may define a new function,

n k
2%

Nz) _ k=0 -
v(z) m’- - uE——— . (2-7)
S b
k =0
a * z’azz‘.....' oo*&Zm
VWz) =% " 4 2 * m (2-8)
1 4 bz +b2?4 teeseeses + b 2"
n

It is readily seen that the right half of the s=plane maps into the inside

of a unit circle centered at the origin in the z-plane. The imaginary axis

ﬁ [ of the s-plane becomes the unit circle in the z-plane (see Fig. 2.3).

$ , / . 8-plane i{ z-plane
/,// ; sT
Y

| , : / z -0
, '/ W 4// A,
//

i 7 ek Lo
VY

Figure 2.3 Map of right half of s-plane into z-plane

./‘

{f . Therefore, if the program is to be stable, all the zeros of D{z) must lie

outside the unit circle except that single order zeros may occur on the

unit circle. In other words, the magnitude of the roots of D(z) must be

greater than or equal to unity, and the roots of unity magnitude must be

simple.

5
|
:
?
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Summary: To test for the stability of a program, map the semi-infinite

strip of Fig. 2.1 into the Q-plane EQ(s) is the depominator of the program
transfer mnctionj If the locus in the Q-plane does not enclose the origin,
the program is stable or convergent. If the locus passes through the origin,
Q(s) has a zero and the order of this zero must be determined. If the zero
is of first order, the program is stable; otherwise, unstable. An alternate
method is: Make the change of variable, z = e-aT, and find the magnitude

of the z-roots. If each root has either a magnitude greater than unity or

equal to unity and is simple, the program is stable or convergentj otherwise

unstable or divergent.
2.3 Loci of Q(s)

In the previous section it was demonstrated that the stability
of a program can be determined by mapping the contour enclosing the
semi-infinite strip of Fig. 2.1 into the Q-plane. It was also shown that
the only part of this contour that we need to plot is that on the imaginary
axis. The paths (b) and (d) cancel and the path (c) excludes the point
(1,0) in the Q-plane. Hence, we are interested in the properties of Q(jo)
and its locus in the range, - ‘%léco ""-En'.

Q(jo) has severgl properties that are helpful in determining its
locus.

(1) Q(jm) is periodic of period-{2. This was proved in the
previous section.

(2) Qjw) = Q(-jao)*. This property follows directly from
the fact that Q(j») is a polynomial in e~ T, and as a

consequence, the locus of Q(jw) must be symmetrical about
the real axis.

P
e —T

N T
e e

——n—-%_ 3 -2
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(3) At ® = 0 and 5 Q(jw) is real and its locus at these two
points crosses the real axis either normally or tangentially.
This statement is proved and elaborated upon in Appendix A.

As a consequence of the first two properties, the locus of Q(jw)
for 0 be mA‘?completely determines the locus in the Q-plane. The locus
for -‘9‘ Lo £.01s just the mirror of. that for the positive values of w.
Thus the first two properties result in a substantial reduction in the amount
of work required to plot the locus of Q(jw). The third property enables
one to determine accurately the shape of the locus in the neighborhood
of ® = 0 and :“—?‘ .

Several methods may be used to determine the locus of Q(Jco).
Three of these aret (1) add the loci of the individual terms of the
polynomial (each locus is a circle) to obtain that of Q(jw); (2) factor
Q(j0) and multiply the loci of the factors; and (3) express Q(jw) in the
form R(m)[ﬁ(a;) and make a point by point plot. The method that is best
to use depends on the particular Q(jw). However, it is to be expected that
the extra analytic work required in methods (2) and (3) will result in
less graphical work and more accurate loci. None of the methods will be
discussed, but they will be illustrated.

Let us now consider several examples of loci of Q(jw).

T T

1. Let Q(s) =1 - 0.8 " ¢ 0.3 e'z’ (2-9)

Take the derivative with respect to s.

8 - 0.876™" - 0.670*" (a)

(2-10)
%% . 0.27e~5T () - 367%T) (v)
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For neither s = 0 nor ijépis the derivative zero, so the locus is normal

to the real axis at both points. Fig. 2.4 (a) shows the locus of Q(jo) and
how it was obtained (for the point wt = 13;!) from the loci of the individual
terms. The locus for negative values of ®w is shown by the dashed curve,

since it may be obtained from the other half of the locus. After this, only
the locus for positive » will be drawm. The locus does not enclose the origing
therefore, a program whose transfer function has the denominator,

5T 4 0.36"%°T w111 be stable.

1 - O.Be
2. Let Q(s) = 1 - 0.8¢™3T & 0.4e~28T (2-11)

Take the derivative with respect to s.

? -9 0.87e~5T - O.8Te-2sr (a)
k K- (2-12)

L - 0.8775T (1 - &~*T) | © (b)
For s = 0, the derivative is zero, Q(s) has a saddle point here. Q(s) can
be rewritten as,

: 2
; Qs) = 0.6 + 0. (1 = &™5T) (2-13)

E ~ which brings the saddle point into evidence. In this case p = 2, so at

® = 0. the locus is tangent to the real axis. At s = ij%}'gg # 0, so the
locus is normal to the real axis at this point. Fig. 2.4 (b) shows the

i resulting locus. It does not enclose or pass through the originj therefore,

this Q(s) will lead to a stable program.

1 3. Let Q(S) =] - OQBQ-ST + o.se-ZsT (2‘114)
% Take the derivative with respect to s.
S 8 - 0.876™5T - o727 (a)

(2-15)

<> - 0.27675T (i - SO-QT) (v)
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For neither s = 0O nor :Jélis the derivative zero, so the locus of Q(j») is
perpendicular to the real axis at both points. The locus (as shown in
Fig. 2.4 (c)) does not enclose the origin; therefore, this Q(s) is the

denominator of a stable program transfer function.

-l
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CHAPTER III
ANALYSIS AND SYNTHESIS OF LINEAR, DIGITAL COMPUTER PROGRAMS IN THE
FREQUENCY DOMAIN
In the first part of this chapter the analysis of transfer functions

is dealt with by expanding the transfer function into partial fractions.
Next, programs are realized from transfer functions by three methods: direct
programming, cascade programming, and parallel. programming; and the storage
and time requirements of each are presented. In the last part of the chapter
a short, general discussion of synthesis is given, and one possible synthesis
procedure is 1llustrated by the synthesis of a program for differentiation.

3.1 Response of Programs at Real Frequencies

The input to a computer has a certain frequency spectrum, and
in order to analywe the action of a computer program on this input function,
we need to have a knowledge of the frequency response of the program. Thus,
we are interested in the locus of W(jw), the map of the jw-axis of the s-plane

into the W-plane. A familiarity with the frequency characteristics of the

simple transfer functions is essential for the understanding of the possibilities

and limitations of more complicated ones.

In many cases the desired locus of the transfer function of a
digital computer program is given, and the problem is to approximate this
locus by that of a realizable program; i.e., by a ratio of polynomials in
e™®T. A study of the loci of typical terms of W(jo) is helpful in making
this approximation.

3¢2 Analysis of Building Blocks of Transfer Functions

As we have seen, the transfer function of a linear, digital

computer program is most generally expressed as the ratio of polynomials in

o"T.
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-sT =-28T -msT
a ‘ e ’ ‘ a e * [N N N X ) ‘ a e
w(s) -’MO(S) - 0 81 2 m (3.1)
I(s) 1 +b.e T epe2T s ...+ ae T
1 2 n

A partial fraction expansion of W(s) can be made, and we may call the individual
terms of the expansion the basic building blocks of a program'transfer functionm.
In general W(s) may be broken up into a polynomial plus first and second degree
partial fractions (from the real and conjugate complex roots of the denominator,
respectively).

In analysing computer programs in the frequency domain [ﬁnding
the locus of W(JQ)J several methods can be used. Two of these are: (1)
Find the loci of the numerator and denominator polynomials and then divide}
(2) expand W(s) into partial fractions, find the locus of each term of the
expansion, and add the resultant loci. In most cases the first method
is easier to use, but the second is included here because of its connection
to the synthesis of program transfer functions (approximation of a desired
locus by a sum of the basic building blocks). A fand.iiarity with some of
the possible loci of polynomials and first and second degree partial fractions
is an aid in the synthesis procedure.

The loci of second degree polynomialshave already been discussed,
and the locus of a fourth degree polynomial will be illustrated in connection
with polynomial building blocks. Since there is only a short step from
the loci of polynomials to the locus of a transfer function, the first
method of finding the locus of W(jw) will not be discussed.

For use of the second method, we will investigate the loci of typical

terms of the partial fraction expansion of W(jn).
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3.21 Polynomials
A typical polynomial transfer function is of the form,

r
W) = S qe™ " (3-2)

For s = jo, the locus of each term of the polyﬁomial is a circle. For
Q(s), the con!éant term is unity, but for polynomial building blocks, the
cénstant term may have any real value. In the previous chapter, three
examples of the locus of second order polynomials in e'sT are givan,vso now

let us find the locus of a fourth order polynomial. Let,

W(s) = %g (13 + o7 - 3672T , 47387 _ g -beTy (3-3)

First examine the function for saddle points.

gg - %3 (4Te™3T & g1e™28T L ¢re~3°T hTe-h’T) (3-4)
%, . - % e-aT (2 - BQ-ST + 30‘2'T - 26-331). (3'5)

The derivative is zero far s = 0, therefore W(s) has a saddle point there.

W(s) can be written in the form
2

W) =1 - (2467 (-6, - (3-6)
which brings the saddle point at s = O into evidence. The saddle point
is of first orderj therefore, the locus is tangent to the real axis at
s =0, w(”) is
-JmT)2

W) =1 -qg (2+ 6% (-0 (3-7)

In this case it is easier to determine the locus of W(jo) by
plotting the second term of (3-7) and shifting the origin one unit to the

left. A convenient way to find the locus of the second term is to let
2
- (24 02Ty (3 _ gmdoh)" | g8 (3-8)
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where both R and @ are functions of «T. Some trigonometric manipulation
ylelds,

R=2(1 - cos of) |5 ¢ L cos 2T (3-9)

and

g tap~1]tan ngi + tanzm‘r)
, tan“aT - 3 J

(3-10)

The resulting locus of W(jo) is shown in Fig. 3.1l.

2
W(s) =1 - %5 2+ °-23T) (1-e"T)

Figure 3.1 Locug of s Fourth-Degree Polvnomial Tranafer Functiocn

3.22 First-Degree Partial Fractions (real roots)

In the partial fraction expansion of a rational function et

’

a typical term has the form,

Wl(s) = ——5—1—- . (3-11)

1+8e°

o

',' A,A,A_u
Lo oty
el 'M- Po’
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If the constants o and P are real, then (3-11) can be considered

a basic building block. In this section we will consider the case in which

o and B are real.

section.

-35-

The case of complex constamts is considered in the next

First, we may set oL = 1 because it is merely a scale factor.

Second, the magnitude of P must not be greater than unity for Wl(a) is

then unstable. If |B| & 1, the typical term is stable.

To determine the loci of typical terms of the form (3-11), we need

only apply some of the rules of the loci of complex functions.

that the locus of 1 + B e~ 44 g circle of radius |8]

point (1.0). To find the locus of Wl(jm) , the inverse of a circle must be

First, note

centered at the

found. If )pl = 1, the circle (1 + e'JmT) passes through the origin,

and its inverse is a straight line parallel to the imaginary axis. If

’ﬂ[ £1, the circle does not pass through the origin, and its inverse is

another circle.

The loci of two stable first-degree partial fractions are

shown in Figo 3020

A

A A 1
1 =
1+0.Se"~1°;r Kl‘ejm
“/2 v semli~ A ,,/2
circle p
ol =0

Y — } >
n/2

R
1+ "05 e-jdr

1

s W) = oo T

b.
Figure 3.2 Loci of First-Degree Partial Fractjong
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3.23 Second-Degree Partial Fractions (complex roots)

If a typical term,

x | ,
" = » .12
1(8) Tep e_'lr (3-12)

in the partial fraction expansion of a rational function of e-s‘l‘ has complex

constants, there will be another temm,

*
Wye) = 2, (3-13)
1 + pre~dT
in the expansion whose constants are the conjugates of those of Wl(.a).
(The asterisk means conjugate.) Both Wl(s)' and Wz(s) will be stable if and
only if lpl & 1., If the rational function has real coefficients (as in
practical problems) the terms such as Wl(s) and WQ(S) must come in pairs. -
Add the two and obtain a typical second degree partial fraction with real
coefficients.
*
+

o et o) o (¢ BT §
Hy(e) = () 4 Wyle) = e e_gr‘ = (3-14)

In this section the discussion is restricted to second-degree partial fractions
whose denominators have complex roats of e'ST. To simplify the analysis,
w3(s) can be written as,

1 ale-s'l‘
w.(s) = — (3-15)
3 1+ ble-sl‘ . b23°2’T ’

which differs from (3-1lL) by only a constant multiplying factor.

To insure that the roots of the denominator of (3-15) are complex,
b12 Z. hb2. With this condition imposed on the constants of the denominator
of (3-15), it can be considered a basic building block of a program transfer
function.

Y
e T TR T
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Now let us consider the stability of such a building blocke.
Hh(a) will be stable if and only if both Wi(s) and Wé(s) are stable. A
comparison of (3-14) and (3-15) shows that,

by =B+ g*, and b, = pp* - Igl2. (3-16)

Therefore, the necessary and sufficient condition for the stability of
"3(’) is that, 0L b, & 1. We may combine this with the condition for
complex roots in the deéominator of “5(’) and obtain,

2
!
(,2_) L b, 1 (3-17)

as the necessary and sufficient condition that insures stability of Hé(s)
and complex roots of its denominator.

In Fig. 3.3 there are plotted three loci of building blocks
of the form (3-15). All three are stable. It should be observed that by
changing only the numerator of the transfer function, three completely
different loci have been obtained.

By adding building blocks of the form discussed in these sectiona,
a desired frequency characteristic can be synthesized. The synthesis of

a differentiating program is discussed in a subsequent section.
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3.3 Realization of Programs From Their Transfer Functions

The purpose of this section is to develop and compare methods by
which a program can be derived from a rational function z = e"T which is
the transfer function of the program. How this rational function is arrived
at in the first place is the concern of the last section of this chapter.

3.31 Qeneral Considerations in Program Realization

In choosing a particular method of programming, one may consider
the following factors: storage requirements and time requirements. To a
certain extent one of these requirements can be reduced at the expense
of increasing the other and the optimum method will depend on the particular
application. It is necessary, therefore, to make available various possible
methods of programming and to form some idea about the requirements of eachj
intelligent program realization can then be adapted to each application.

In the consideration of storage requirements of linear programs,
it is convenient to distinguish three types of storage: data storage, constant
storage, and instruction storagel. The data are the successive sampled
values of input and output. The complexity of a program is closely related
to the number of constants and to the age of the data to which the program
refers. The program can be divided into arithmetic and manipulative parts.
The number of arithmetic operations involved is roughly proportional to
the number of constants, each implying a multiplcation (of a piece of data
by the constant) and an addition (of the product to the other terms).

The number of manipulative operations is related to the "age™ of the oldest

T

It is understood that in a general-purpose computer there is no physical
difference between the storage registers containing numbers or instructions,
and any register may hold either kind of information. The distinction

made here is only for the purpose of discussion.

™ Lt

O e T
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data used, where age is expressed in terms of sampling intervals. All
"younger" data must also be stored even if not used at each calculation
(the corresponding constants being zero), for eventually they will become
the oldest data. After each calculation of a new output value, the manipulative
instructions shift each piece of data to a storage location at which an older
piece of data has been, the oldest data being lost. The manipulative program
is seen to rearrange the data storage in such a manner that at the new sampling
point the same arithmetic program will calculate a new output value.

The time requirement of a program is the product of the number of
instructions to be carried out and the average duration of an instruction.
The latter factor depends on the physical characteristics of a particular
computer and is more or less fixed; the number of instructions performed
in sequence, however, depends in part on the manner of program realizationi.
In each particular realization a significant trading of time for storage
is possible by so-called cyclic procedures. One notes that often the calculation
of each term in a program involves the same sequence of arithmetic operations.
The simplest and fastest procedure is to store as many of these sequences
as there are terms to be calculated. Considerable storage may be saved,
however, by storing these instructions only once and cycling through them as
many times as there are terms to calculate. Unfortunately, the time requirement
increases considerably, for in each cycle the addresses of the instructions
must be adjusted to meke them refer to different storage lc;cations for different
terms and the number of cycles must be counted to permit termination of
the cycling process.

The following sections and related appendices will serve as specific

illustrations of these considerations in programming.
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3.32 Direct Regression or Direct Programming

The starting point of our realization procedure is the general

expression for the transfer function of a linear program,
a +aeTeae e, , ¢ ane-

W(s) = =2 2-23? -nsT °* (3-18)

+p et .o
1 b1° + bzo ‘., + bne

msT

In order to interpret a program in the time domain it is necessary to eliminate
fractional expressions. The most straightforward way of doing this follows
directly from (3-18). From it we can obtain
‘ -nsT\ 2~ . o =8T -nsT
Bs) = (ao t o tae ) I(s) - (ble + eee O.pne ) O(s).

(3-19)
The inverse transform of this expression is
B(t) = agi(t) + a3t = 1) + .00 ¢ 2 (b - al) - b3(t - T)
- eee = bn’d(t - nT), (3-20)

where 3(t) and 1(t) are impulse-modulated (sampled) time functions having
the value zero everywhere except at the sampling points. In terms of some
continuous functions o(t) and i(t), which agree with the area-values of

S(t) and T(t) at the sampling points, (3-20) is often written as
oy = aoij + alij-l $ eee + amij-n - bl?j-l - eie = bnoj-n’ (3-21)
where j signifies particular sampling point and j-k the k-th preceding sampling
point. Eq. (3-21) is more familiar to the numerical énaiyst than (3-20),
but the two are entirely equivalent and are called regression formulas.
These equations state that the present result (output) is computed by a
finite linear combination of the present and past input values and of
past results (outpup values). .

Several characteristics of regression formulas should be observed.

1f the right side of (4-20) or (4-21) has at least one non-zero b,, then
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the present output depends on at least one previous output, which in turn
depends on an output further back and so on. It follows that the present
output value is affected by output velues as far back as the start of the
problem and therefore, also by input values that far back. Thus regressing
to a finite number of output values corresponds to regressing to an unlimited
number of input values. This aspect of the regression equations is important
and will be further emphasized in the following sections.

Interesting conclusions can be drawn concerning memory requirements
on the digital computer by considering the actual programming of the regression

formla, (3-21). Assuming that none of the coefficients a, and b, are zero,

k
L one can easily see that in order to calculate a new output value o

5’ when

é} a new input value i, is received, m previous input values and n previous

b
P . output values will have to have been remembered, requiring m + n memory
positions for data where m and n are the subscripts of the last non-zero
coefficients, and furthemmore, it is necessary to store all these data even
if some other coefficients are zero because at the next sampling point.

the same pieces of data will be associated with different coefficients.

; . ‘ It can be stated that, gt least when programming is done by the
| illustrated direct regression methn4, the data memory consists of m + n
registers (memory positions) where m and n are the degrees of the numerator

sT

and denominator polynomials in z = e¢ = of the program transfer function W(s).

Actually this data storage requirement may be reduced, as will be shown in

Sections 3.33 and 3.3L.
7 To be able to make comparisons between the various synthesis
procedures it is necessary to do the actual programming. This exercise

- is left to the éppendices, and the results will be compared after the

——— Ty,

other synthesis procedures will have been discussed. In Appendix B the

l .
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arithmetic and manipulative parts of the direct regression program are first
constructed separately; then a new more compact program is shown which inter-
leaves the arithmetic and manipulative instructions. Although the Whirlwind
code is used, the results and conclusions can be considered quite general

in view of the fact that the instrmiction complements of most general-purpose
digital‘computers are conspicuously similar.

3.33 Cascade Programming

If the numerator and denominator polynomials in z = o°T are

factored, (L-18) takes the form

1+ cle"T) 1+ cze'sT) Ty
W(s) = a —

cee (1 cmg-
° (1 dle'af)#(l + dze"T) oo (1 # dd

= (3-22)

where -(l/ck) and -(l/dk) are the roots of numerator and denominator
respectively, when considered as pol&nomials in z. Because the coefficients
8 and bk of these polynomials are real, the ) and dk will also be real

or will come in conjugate pairs. At any rate, it is possible to group the

monic factors of (3-22) in some manner

W(s) = W, (s) Wy(a) ... wp(s), (3-23)

where each W&(s) is of a rational form in z having a numerator and a
denominator of not higher- degree in z than W(s) itself has.

The form of (3-23) reminds one of the transfer function of cascaded
linear units in a servo system. Cascading means that the output of one
unit becomes the input to the next one. There is no difficulty in using
the same interpretation to define cascaded programs. At every sampling

point the output of each regression equation is used in calculating the
output of the next one.

—— i
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To be more specific, let us assume that: (1) W(s) is a proper
rational fraction in z, that is, m'<_n1; (2) all roots -l/ck and -l/dk
are real and distinct, since generalization to the case of conjugate complex
roots turns out to be direct; (3) a, = 1 in order to avoid its nuisance
value in the discussionz. With these assumptions it 1s possible to have
p = n in (3-23) with the denominator of each Hk(s) being a single monic
factor in 33 that is,

l14c¢c e-ST

W(s) = —E (3-2L)

-g ’
1+ dk°
where ¢, may or may not be zero, but dk # 0. There are n factors of the
type (3-24) each representing a simple regression equation. In m of
the factors S ¥ 0, in the other n-m factors ¢, = 0. The data storage

k

associated with each Wk(s) equals 2 when c, # 0, and 1 when ¢, = 0.3

k
However, the input data that must be stored when Cp # 0, is also the output
data that had to be stored for the preceding cascade program Wk_l(a);

consequently, there is only one data to be stored for each Wk(s) regardless

of the value of c,, except for the first one Wi(s). But when m < n (proper

rational fraction), one ¢y - 0, say ¢, = 0, making the total required data

: If mJ3n, W(s) can be written as the sum of a polynomial and a proper

rational fraction in z = e~ST, The program corresponding to the polynomial
part is a simple linear combination of input values. Discussion of this
case is omitted without any serious loss of generality.

2 It 8q # 1, only a simple multiplication has to be added to the program.

3 Each H&(s) is the transfer function of just a regression equation and

its data storage is the sum of degree of numerator and denominator, as
discussed in the previous article.
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storage n; a material reduction over the m + n data needed in direct regression
programaing.
In order to translate the cascade scheme into an actual program,
we may proceed as follows. First, we write (3-23) (vith p = n) in terms
of input and output transforms, as
W) T Gl L Gl
Te) T () Tyle) T (s)

n

) (3'25)

One way of making (3-25) an identity is by letting

8) = 1(s)

(
'fz(S) = 0(s)

)
~
[ ]
~
»

'5‘2(1)'

(3-26)

T () = O ()

which make
s) = 'Sn(s).
Using the relations (3-25) and (3-26) we obtain
0(s) _E(_az (O N O (3-27)
o) o) Tyl IO

The various factors equal the respective program transfer functions; namely,

s

=" NSRS

.

T e T

PSS S

CEERE-C S
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'3'1(3) v (o) 1
T(s) 1 1le dle"sm
0,(s) 14 ¢t
S - Wyle) s —Eo
0y (s) 14 dpe (3-28)
O(s) ¥ () lﬁce-sr
3'“_1(5) n® 144 o

where m of the ¢, are not zero. Multiplying by the denominators changes
the set (3-28) into

(1 + a,0™") T (a) =T(s) )
(1 + 4,0™T) Ty(s) = (1 + c,0”™") G (s)

(1 ¢ 4y0™%) Tlo) = (1 + 036™*") V(o)
. (3-29)

1+ dne"sr) (s) = (1 + cne'ST) '6;‘_1

(s)
The inverse transform of the foregoing set, with one term of each equation
transposed to the right side, is the desired set of regression equations.
5, () =1(t) - 4,7 (+-T)
Gy(t) =3 (t) + 0,5 (£-T) ~ 4,6,(¢-T)

CAQRICHORE 02 (t-1) - 4.5,(¢-1)

(3-30)

olt) l(t‘.) +ec o el (1 T) - d’b’(t-l‘)

LTI
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The detailed coded program corresponding to (3-30) is shown in Appendix C.
Cascade programming, although not referred to by that name, is

a familiar technique in numerical procedures. However, the clear-cut and

general equivalence of the direct regression and cascade programming is not

alvays well understood. Cascade programming arises naturally from the kind

of thinking prevelant in numerical work. Consider the simple example of

solving the second-order differential equation,

2

[ )]

+ By = 0. ' (3-31)

[< )]

t
The derivatives may be considered as the separate variables, y'(t) and
y"(t); then we obtain the following three sampled functions:
Fr(t) = -py(t-- 1)
T(t) = HL) + T (¢ - T) (3-32)
F(t) = Ty () +F(t - 1)
where the first equation of the set is derived from (3-31) while the second
and third are elementary first-difference extrapolations. The set (3-32)
indicates cascade programming because the output of the first equation is
in the input of the second, and the output of the second equation is the
input to the third. The peculiar thing in this case is that the input
to the first equation is not an independent function but directly related
to the output of the last equation. This feature establishes the constraint
imposed by the differential equation.

The Laplace transform of the set (3-32) is.

—~

In o - e-s'l‘Y
T - TI* ¢ 0”57 (3-33)

-

Y =T + 2Ty

bt e T T

A, ——— —
ool

. ——

N o e

)
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from which the explicit relations between inputs and outputs are obtained

as follows:
1-e78T (3-34)

For realization by three cascaded factors, we have

Vy(s) = -pe™"

wg(s) = ._L._

1-e" (3-35)

Wy(s) = —L

l -8

It is clear that a single transfer function can be made to replace the

cascaded system of three; thus

W(s) = Wl(s)wz(s)WB(s)

-g12%e~s" (3-36)

T, e-ZST

W(s) =
° 1-2°

The corresponding regression equation is simply obtained as

Hs) = (2 - B12)e ™ H(s) = & 2*TX(s). (3-37)
The inverse transform of this equation is

Ft) = (2 - pTOOFE - 1) F(t - 21, (3-38)
which could have been otained from (3-32) by the elimination of y'(t) and
y*(t), but even in this simple case the process of elimination in the time
domain is not direct.
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The fact is that in numerical work a cascade method such as (3-42) is
much more generally used than the direct regression of (3-38). Often there
is good justification for this preference; for instance the values of the
first and second derivatives may also be needed. However, when such or
similar justifications do not exist, the direct regression may turn out to
be simpler than cascading. In the present example, (3-32) calls for one
more constant, two more multiplications and one more addition than (3-38).

If the first two equations of the set (3-32) are combined, one multiplication
is saved; furthermore, the manipulations in the direct method happen to be

more awkward. Because in this case the input and output are the same quantity
the formulas of Appendices B and C are not directly applicable, the requirements
of the tw methods must be determined by actual trials.

3.34 Parallel Programming
If the transfer function of a program is expanded by partial

fractions in terms of 3z, (3-18) tales the form

fl f by

w(S) - —-————T- + -————T2 * o0 ¢+ ‘————_'Tn (3"39)
1+ dle" 1+ dze" 1+ dne's }
. i

— N e

as long as m < n. Thus, the transfer function W(s) is replaced by the

sum of a number of simpler transfer functions; namely,

i

W(e) =~ W,(s) + W,(s) ¢ ...+ Wp(s), (3+40)

———_ N
L A

where some of the Hk(s) may be the combination of several partial fractions,
but all are of lower degree than W(s) itself.

The form of (3-40) may remind one of parallel combinations of

o e T

network admittances. Paralleling means that the same input (driving voltage)

e

is applied to all component admittances and the output (driving-point current)

is obtained as the sum of individual outputs (current through each admittance). {
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The same interpretation can be applied to parallel programming. The programming
will involve p regression equations all using the same input values, and all

i
their outputs adding to produce the desired over-all output.

To arrive at a more specific interpretation, we first make a few

restrictions again: (1) W(s) is a proper fraction, i.e., m < n, and (2)
the roots of the denominator polynomial are real and distinct. Then all

constants fk and dk of (3-39) are real and in (3-40) p can equal n; moreover,

each term of (3-39) is a simpie regression equation involving two constants
and one data storage. Thus, the total number of data to be stored is only n.
Just like in the case of cascade programming, the lower requirement for data
storage of parallel programming may be a great advantage over the direct

él programming method. However, this feature does not mean that parallel or

F - cascade programming should always be employed in preference to direect

programming. For instance, there is the case when m = 0; i.e., the numerator
of W(s) is 1 (or ao). Of the input values the program uses only the present
one and the total data storage is n regardless of the programming scheme
used;‘on the other hand, the number of constants will be n for the direct

; » and cascade method, but 2n for the parallel method, putting the latter at

a disadvantage. Similarly, if the denominator of the over-all transfer

-nsT)’ then

function lacks several terms (say, the denominator is 1 - bne
factorization of the denominator introduces all terms, making the cascade

} and parallel program much longer than the direct program. Another factor

' which may militate against the use of parallel programming is the presence
of multiple roots in the denominator. If a root is of multiplicity r,
. it may produce up to r terms of degrees r, (r-1), ...2,1 (the r-degree

{ ) term never being absent) in the partial fraction exapnsion, but the same

root will require only one r-degree, or r first-degree, cascaded factors.
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o In order to interpret the parallel method of programming, we

proceed in the usual manner. For the various terms of (3-40) with p = n,

we write
0. £
W.(s) = 2(8) = 1
(e F(s) 1+ d.le"'T
(s) L,
W,(s) '33' - 2 r
I(s) 1+ dzo"‘
. ; (3-41)
0 (s) . f
W(s) e B = n
r‘ n®’ % I(s) 1 + dne'i'r
Jl and
} - W(s) = g'_?% . (3-42)
. - 3

Cross-multiplication by the denominators in (3-41) yields the set
4 Q-+ a.le"T)b‘l(s) - flf(s)
(1« dze'sr)ﬁ;(s) -'fzf(a)

]
! : * (3-43)
(1 + 40”3 (o) = £, T(s)

while in view of (3-1;1) and (3-42), (3-40) can be written as

o(s) -'6;_(3) + 5;(3) + ... f'i);(a) . (3-k)
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The inverse transforms of (3-43) and (3-Lk) yield the desired set of

regression equations, which follows.

¥ (t) = fli’(t) “ 87 (¢-T)
By(t) = £,3(t) - 4, (t-T)

. ' (3-L5)
‘o’n(t) - rni'(t) - dn’6'n(t-'r)

() =B (t) + 32'(»0) ¢ e s T ()

The detailed coded program corresponding to (3-45) is showm in Appendix D.
| Parallel programming has not been generally used in numerical

work. To the knowledge of the writer, the usual methods of nﬁmerical
analysis do not naturally lead from a direct regression equation, which
has reference to several previous input and output values, to a set of
simpler regression equations, each of which refers only to the last

input value and to a preceding1 output value. By the method of frequency

transformation the parallel method is found quite directly.

[3

1 1n case of complex d, 's in (3-39), a combination of two conjugate complex

partial fractions in z will result in a slightly more complicated regression
equation, involving one additional input and output.
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3.35 Comparison of Programming Methods

The purpose of this section is to compare the effectiveness of
the various methods of program realizations based on the transfer
functions of the programs. A complete general treatment appears too
far-fetched and, therefore, this study is limited to a certain class of
programs. Despite these limitations, which are discussed below, the
investigation is sufficiently general to show how the results can be
used to improve the instruction code of a general-purpose computer or
to design a special-purpose computer, when these are used in control
applications,

The three methods which will be compared are listed below:

(a) direct programming,
(b) cascade programming,
(c) parallel programming.

Other programmihg schemes may be derived from the rational transfer
fﬁnction W(s). One may carry out the long division in z of the numerator
by the denominator until he arrives at a certain number of terms of the
quotient., The transfer function can then be expressed as the sum of the
quotient terms and of the remainder divided by the divisor (the original
denominator). Any number of variations can be obtained by stopping the
long division after different number of steps, but only in the most unusual
cases can this approach be expected to yield a more efficient scheme of

programming than the three major methods discussed in the preceding sections.
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Other schemes that are even more artificial than the long-division scheme may
be derived, but no other general programming method has been found that gives
promise of effectiveness comparable to the three which are considered. It

is noted that in certain cases a combination of two of the three listed
methods may turn out to be more efficient than any one. An example of

such a case is described below.

As the basis of comparison of programming methods, the requirements
in storage and time are used. The particular application or purpose decides
which of these two factors should deserve more; attention. It is assumed
that the complete sequence of instructions, as ﬁsed at each sampling point,
is stored; the possibility of cycling programs, which re-uses a short
sequence of instructions for the calculation of each term, is not discussed.
Essentially the Whirlwind I code is used throughout, but variations are
considered.

As a starting point we recall that the transfer function of a

linear program is,

~ -sT -28T -msT
w(s) . 0(3) i} ao + 818 + a2e 8 * se0 ¢ ame (3446)

?(s) 1 e h‘lc's'r y bze-' 5 e cee bne'nd

In general, m and n may be any positive intege_aal and indeed, their relative
sizes will hardly influence the comparisons to follow. Nevertheless, it is
helpful to distinguish three cases:
(1) n = 0. (3-46) reduces to a polynomial in z = e”ST; i.e.,
the new output value depends omly on present and
past input values, not on past outputs also.

Present-day numerical analysis abounds in numerical

T This is in contrast with networks where certain restrictions on the
degrees of numerator and denominator polynomials often exist.
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" processes corresponding to this special case.1
(2) m ¢ n.. (3-46) has the form of a proper rational function
of £ in this case. In Sections 3.32, 3.33, and 3.3k
dealing with the various programming schemes, this
case was assumed for the sake of simplicity.
(3) m >n. The rational function in z of (3-46) may be called
improper, but it can be converted to the sum of a
polynomial (Base 1) and of a proper rational fraction
(Case 2) inz = e~°T,
In order that the storage and time estimates to be arrived at should apply
to all cases, it is necessary to define the i‘ollowing quantities with
reference to (3-U6):

m = degree of numerator,

.- . n = degree of denominator,

.k = one less than the number of non-zero constants in
the numerator (mkg n).

c: n = one less than the number of non-zero constants in
the denominator (n.k§ n).

} m_ = one more than the excess of m over n; i.e.,
m, = m-n¢l when m >n, and m = 0 otherwise. For

proper rational fractions m < n and m, = 0t
On basis of the coded programs shown in the appendices, the table of
Fig. 3.4 summarizes the storage and time requirements in terms of the

quantities Jjust defined. This tabulation is more general than the results

given in the appendices, for in the appendices it was also asgumed that

s

none of the constants were zero, that is, = m and = n3 furthermore
| ™ M re,

- 1 Examples are numerical methods based on polynomial approximations with
- equidistant spacing of the independent variable. Indeed, such examples
form not an insignificant portion of the available numerical techniques.

T e e
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only case (2) was treated making m, = O. On the other hand, in the tabulation
of Fig. 3.l these restrictions of the appendices are absent, but the following
assumptions are still made: <the roots of the numerator and denominator
are real and distinet, and the straightforward programming techniques of
the appendices is used. Thus, the constants stored are those that appear
explicitly in the various regression equations. Actually some saving in
instructions would result from the use of certain ratios of these constants.
For instance, the regression equatidn [§r. (B-hﬁi]

o (t) = £,1(¢) - 435, (+-T) (3-47)

takes six instructions, as shown in the coded program of Appendix D.
If, howevér, (3-47) is written as

Pt - ™~ - dl o -
S -5 [T - -], (3-18)

its coding would cost five instructions only, but certain questions on the
relative sizes of the constants would arise. It seemed best to avoid such
questions, because the considerations here are rather general and the value
of a too-specialized treatment is questionable.

The comparison of the three methods of programming can be undertaken
by considering each item of Fig. 3.4. Because of the straight sequential
programming the time requirements are the same as the storage for instructions
and, therefore, consideration of storage will give a complete picture.

As far as the number of constants stored are concerned, the direct
method is not worse than the cascade, which in turn is not worse than the
parallel method. This is so because in the direct method only the non-zero
constants of (3-L46) have to be stored, while factorization in the cascade
case will produce as many constants as there are roots in z. In the parallel

method two constants (root and residue) are produced for each denominator
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root and if the numerator is not of lesser degree than the denominator,

further terms and constants result. As an example, consider

foie
l% e-23'r

W(s) =

e

1 - .

for which

m=1, m.k-l, me-o

n=\, n_ =2

According to the table of Fig. 3.4 the various constant storage requirements

are
direct: mk+nk4'l'h
cascade: m +n ¢+ 1 =6
parallel: 2n = 8

These figures can be simply checked. In the direct case the four constants

are apparent in (3#9). For the cascade case, the transfer function is

written as
%_%e-sl‘
W) »—21 .1 R . -50
s 141:0-'1- 1_10-.1_ IQEO-ST l-l‘eﬂ » (3-50)
73 vz V2 2

and the six constants in question are: N2, <IN , *1/2, <1/2, +5/8,
and =1/h4. The manner of programming illustrated in Appendix C actually
necessitates the separate storing of positive and negative constants,
even though 6f the sameé magnitude.

For parallel programming W(s) of (3-49) is expanded in partial

fractions in terms of £ and takes the form



Report R-225 ~58-

S+ - 2}
We) * —y g ¢ —1T ¢

-8 -
_ 1’5’2: 1-/_;;0
(3-51)
9 1
- 15 . I8
10-2-0-9 1-59-'

The eight constants to be stored are evident in the foregoing aquation.

The next item of comparison is the data storage, for which the

above example reads, on basis of Fig. 3.4

directs men=5
cascade? ns=)
parallel: nely

These figures can be verified in the three foregoing equations. The numerator
of (3-49) indicates that one past input value (corresponding to the e"T term)
must be stored; the present input is used as it arrives and then stored

as the past input for the next calculation, as shown in Appendix B. Thus

the numerator implies one data register only. Similarly the denominator
implies the storage of four past output values, even though the a-s‘l‘ and

e'B'T terms are absentj for the corresponding past outputs must be remembered

for the next calculation.

For the cascade method, (3-50) seems to indicate five past data
to be remembered; however, the 0™°T term of the last numerator refirs to
a past input that is also the past output of the preceding factor, since
in cascade programming the input of a component program is the output of

the previous one.

In case of parallel programs the four past data are quickly
identified with the e 5T terms of (3-51).

iz e s oimt——

A -
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The expressions for instruction storage and for time requirements

are identical, and produce the following tally in the present example:
directs 2m ¢+ m_+n + nk) + 7 =23
cascade: 3m+¢hne+ 6=25
parallels ™n+ 4 =32

No verification of these figures is carried out by detailed coding of the

programs because the appendices cover the general case. The advantage

seems to be on the side of direct programming as far as time is concerned,
but this advantage is slight and arises from the fact that in the present
example.  two denominator constants are zero. An advantage of direct programming

appears also in the total storage requirements for the same reason:

directs bh+5+23 = 32

cascade: 6¢«bL+2541 =36

parallel: 8 ¢ L ¢ 32 ¢« 1 = 45

This example, as well as the tabulation of Fig. 3.k, indicates

the disadvantagé of parallel programming. It seems that this kind of
programming may have an advantage over either of the other two in certain
cases, but hardly ever over both at the same time. Thus, the choice narrows
down to direct and cascade programs, or possible combinations thereof.

To show how a combination of methods may be used, we write (3-49) as

g - % e—sT
1 -
W(’) - 1. % e:ﬁr . - % e_m (3 52)

which indicates a cascade combination of two direct programs, for which

respectively

-y
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=, n =0 I
mk =0 m = 1
n =2 n =2
n,_ = 1 n, * 1
m, = 0 m, = 0
The direct program of each cascaded component is somewhat simpler than it
would be for two separate direct programs because the input and output devices
\are manipulated only once for the composité program, rather than once for
each component program. This saving amountsto six instructions, thus the
instruction storage or 3155 requirement is:
first components: 2(m ¢ m +n+ nk) +6 =12
second components: 2(m + m 4n+ nk) + 6 =16
o saving as indicated above =6

total instructions 22

Four constants appear in (3-52), two of which are accidentally identical,

and one of which is made 1; thus, the constant storage is:

first component: m + n +1 = 2
saving = =] 1
second component: ™ + m +]1 = 3

saving = <] 2

total cgnstanxa 3
A saving arises in data memory also, because the past input of the second
component is also the past output of the first one. This gives the following

need of dats storage:

o
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first components m+n=3
second component? m*tne=3
saving -1

N

The results of this example are summarized in Fig. 3.5, which shows a small
advantage of the mixed method overrthe direct one.

To pursue further the detailed comparison of these various methods
of programming would lead to undue specializations in the Whirlwind code and
to results of doubtful general value. The illustrated attack on the
realization problem, however, shows how a useful estimate of the complexity
of coded programs can be gained from the evident properties of their transfer
functions. Three further problems will be touched on briefly: (1) computing
delays, (2) means of uﬁing the results to select computer codes; and (3)
means of using the results to design special-purpose computers.

A consideration that has been omitted in our discussion is the
delay incurred through the computation itself. If a digital computer is
used as part of a number of control systems -- say, 50 systems --, then
in each sampling interval it performs 50 computations, one for each systenm.
The time of a computation is then at most 1/50 of the sampling time, T,

and this delay is presumably negligible. If, however, one digital computer

were used with each system, the computation may and, for the sake of efficiency,

should take an appreciable paert of the sampling time. Such a delay would
be very serious and the computer would have to perform a prediction in
addition to the required comggnsation. In turn, this would lengthen

the program, make it less effective, and may even force a longer sampling
timej indeed, in a marginal case, in which the original compensating pfogran

had a delay nearly as large as the sampling time, the effect may become
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cumulative, since a longer sampling time would in turn require a better
and longer program, and so on. In such marginal cases and in any case in
which the computing time is not negligible with respect to the sampling

time, the direct programming has a tremendous advantage over all other

(methods. A glance at the direct regression equation (3-20) shows clearly

that all terms but the first one on the right side of the equation can
be computed before the new input value is obta.'med.1 The computing delay
will thus be t};e time of merely calculating the term, aOT(t) s and adding
it to the already prepared partial result. This delay may conceivably
be negligible. '

All realizations of real-time linear progrems involve accumulation
of products as their arithmetic action and the transfer of data from one
regisi:er to another as their manipulative action. In éa-ae of a si.ngle-addroaa2
instruction code, such as tlgat. of Whirlwind, the ex (exchange) operation3
was shown in Appendix B to be very helpful in improving the efficiency
of the code. ' Other improvements are possible by incorporating special
eperatibns which facilitate the particular type of prbgrams on hand.
Computers using multiple~address codes could be particularly efficient in
such applications. For instance, in a three-address code an instruction

could locate a constant, a piece of data, and transfer that data to a

third address, after which it would multiply the constant and data

1 The second composite program in Appendix B is written in this manner.

2 Each instruction specifies an operation and the storage address of a
single operand.

3 This operation exchanges the contents of the accumulator register with
the gpecified storage register. Thus, one instruction performs a double
duty by obtaining new data from storage and also transterr:lng to storage
s partial result.

e
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accumulating this product with the partial result always left in the arithmetic

element of the computer. This single order would complete both the arithmetic

action (accumulation of products) and the manipulative action (transfer of
data to an "older-data" register) associated with one term of a regression
equation.

Similar considerations allow one to adapt special-purpose or
fixed-program digital computers to control specifications. To be somewhat
specific we assume that the computer is used as part of a single control
system and will have to perform only one computation in each sampling period.
The computer would not operate appreciably faster than one computation per
sampling period and in order to minimize the computational delay it would
follow a direct regression program. In order to keep such a single-system

computing equipment from becoming excessive, a seriall

computer would
probably be used. The program of the computer would be fixed to correspond
to a direct regression program of certain complexity as defined by the
degrees of m of the numerator and n of the denominator of the program .
transfer function. The constants could be set manually on toggle switches
or relays, or they could be stored on the same high-speed storage dev1092
on which the data are stored. A serial adding unit with proper switching
equipment would allow the multiplication of constant and data (by repeated
additions) and the addition of-such product to the accumulated partial

result. The physical size of such a digital control unit may be quite

feasible in certain applications and the design of such a simple special-purpose

digital computer would be particularly justified if the incoming data were
sampled and digital to start with.

TA serial computer operates on each digit of a number in sequence; thus,
the equipment is not duplicated for each digit.

2 Magnetic-drum memory, for instance.
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3.4 Synthesis of Programs in the Frequency Domain

3.41 General Synthesis Procedure

The synthesis of computer programs in the frequency domain may
be broken down into the three following stages (1) specification of the
desired frequency characteristic or lous of W(j»), (2) approximation of
the desired locus by a realizable program transfer function, and (3)
realization of the program. One way to determine the desired locus is
from the Laplace transform of the operation the computer is to perform.
The second step is the difficult part of the problem. The desired frequency
characteristic must be approximated by a rational function of e-'T. No
general rules are available for making this appro:d.métion, but before
making the approximation, one should gain some experience in analyzing
program building blocks in the complex plane. Possibly the most systematic
approach, at present, to the approximation problem is to make successive
approximations to the desired characteristic, using the basic program
building blocks of Section 3.2. The third step involves only a straight-
forward inverse Laplace transform. As an example of program syhthesis
in the frequency domain, a program for differentiation will now be synthesized.

3.42 Synthesis of a Differentiation Program

An ideal differentiator establishes the following relation between
input and output:
ot) = & ), (3-52)
Disregarding initial conditions, the Laplace transform of (3-52) is

Hs) = B . 4 (3-53)
I(s)
and this is the desired transfer function. For s = jo, H(s) becomes

H(jo) = Jo. ' (3-54)
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So the locus of the desired transfer function is the imaginary axis. This
completes the first step of the synthesis procadure,

The second step is to find a rational function of e™T that
approximates this locus. This approximetion is to be made by geometric
considerations based on the desired locus. In this particular example it
is also possible to employ analytic considerations based on the desired
transfer function of (3-54). It so happens that in the present case the
analytic approach is simpler; nevertheless, the geometric approach is shown

first.

The crudest numerical approximation to a first derivative

is the first divided difference.

) - 1) = T(4=1)

(3-55)
The Laplace transform of (3-55) is
_~ 1 - e-sT
Ae) = T(s) = (3-56)
Thus the transfer function of the differencing process is
RO T,
WO(S) —_— B . (3‘57)

I(s)
Fig. 3.6 shows the locus of W (jo) and compares it with the desired one.

At low values of oT (i.e., when the frequency of the input function is low
&i(t) ~i(t-T)

_g_ s=-locus a7 A i(t) ai T
1‘-'-'19——- -locus a

i(t)

V4

Figure 3.6 Comparison of first derivative and first .differonce operators
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with respect to the sampling frequency) the two loci agree reasonably well.
If we could straighten out the circular locus, we would have a better
approximation of the desired locus. Figure 3.7 illustrates a geometric

construction that straightens out the locus and gives us ideal phase

digz-wz
2 1-0 N i(t) - 1(4-T)
-aT T
146"

characteristics.

di(t)

dt

1(t)

S5 ¢

(a) Frequency domain

T=T
(b) Time domain

Figure 3.7 Derivation of an ideal phase, realizable differentiation

b
operator

§
The vectors (1/T)(1 - e-Jmm) and (1/2)(1 « e'JwT) are drawn for 52
‘ i
" a particular frequency.

Using the geometric rule that a triangle inscribed
in a semicircle is a right triangle, one can readily show that L:ll + ’ﬁ[ ‘J?
add up to 90°. However, since o is a positive phase angle, it must be ﬂi
subtracted from B (which is negative) to give a resulting angle of -900, ‘%

%
which is the phase of an ideal integrator. It follows that division of '

the f-locus by the o{~locus will yiéld an ideal-phase formula. The %
reaultiﬁg transfer function is

2 1- e-'T
- R =58
VIORE B (3-58)
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which has the desired phase in the 'range, 0 <ol <w. The interpretation
in the time domain is both plausible and illuminating. The inverse transform

1) ,.zg(t -1 i) - Ti(t-rL (3-59)

(3-59) states that the average of the derivatives at two neighboring

points is spproximately equal to the divided difference for those points.
It is interesting to note that the same approximate transfer

function, (3-58), can be obtained analytically based on a rather good

approximation for T,

(3-60)

Solving (3-60) for s yields
s ?% ——-—i‘l = °_' . (3-61)
lee
Although in this particular case the above analytic approach is
simple and fairly accurate, its general use has certain drawbacks. The

most obvious one is that the rational function of "s™ to be approximated, i]

" which in the present case is "™s" itself, is in many cases not explicitly

known; rather it may be obtalned as an gpproximation to a desired locus
or amplitude and phase response. Then to approximate the rational ¥
function of *g?, which itself is but an approximation, by a rational \"

oI puts the designer on shaky grounds, and it might lead to i

function of e~
far more involved programs than necessary. There is no substitute to
going back to the original specifications and designing directly on their
basis. Another disadvantage of the above analytic approach is that it ?‘y
is not general. One could replace all "s® by the approximation (3-61), |

but how one would get a better solution is not obvious. {
f
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We have an approximation of the differentiation operator, so the
next thing to do is see how good it is. Since the desired locus and its
approximation lie along the same path, a locus study does not give a good

comparison. In such a case separate amplitude and phsase plots can be studied.

For s = jo, Wz(s) becomes

T T
- =JoT "J% - "J‘E’ 2 T
W(jw)-ZI e -2 e e -J,tlnm » (3"62)
2 ¥ 1+ e'am ¥ e""—f! . g'j—fm! 2

which verifies the previous statement that Wz(jco) has ideal phase characteristics.

Hence, it is sufficent to study the amplitude characteristic only.

H(jw) = jo3 (3-63)
therefore,
W, (jo) T
AiSip - (3-6b)
H(Jw) ol °
2

Thus we see from (3-6L4) that the ratio of the approximate function to the ideal
one is always greater than unity. Figure 3.8, a plot of the amplitude

characteristics, shows us that for low values of «T, say for oT é—;? » the

A
(1) H(jm)‘ = T

(2) Wolg) =2 tan 5

(3) Wy(0) = 1.604 tan 31

— v w— ot —— w— o a— —

m‘l‘7

Figure 3.8 Comparison of amplitude characteristics of Differentiating Operators

!
3
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differentiation program will give quite good accruacy. For certain control

applications, values of T up to g or even -;-' might give accep;c,able accuracies.
An examination of the amplitude characteristic of Wz(s) in Fig. 3.8

reyeals that if Wz(s) is multiplied by a constant, which is slightly less than

unit, we will obtain a better derivative on the average. The new transfer

function is
2 1- B-s‘r P
WB(S) =-C WZ(S) = C T -]--—"—-;:;T . (3"65)

Let us arbitrarily choose C so that WB(s) = H(s) for sT = }J %. Then,

2ctan§-§; (3-66)
830

co—t— - —'-F‘ « 0.907. (3-67)

, 6 tan Z i

The improved transfer function is

-sT ‘
we) - 5 loe o, (3-68)

l+e

and its amplitude characteristit is also shown in Fig. 3.8.

Both curves 2 and 3 of Fig. 3.8 accentuate high frequencies which
may be present at the input because of noise. In this case, a transfer function
whose amplitude characteristic is like that of curve L would be a more desirable
approximation for differentiation.

The inverse transform of (3-68) completes the synthesis of a
differentiation program. The result is

o(t) = 1—’%1-& fi”(t) - T(t-r)] - o(t-1). (3-69)

The accuracy of this differentiation program may be determined from Fig. 3.8,

Curve 3.
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CHAPTER IV
FREQUENCY ANALYSIS OF SOME NUMERICAL INTEGRATION FORMULAS

In this chapter we apply the methods of freqﬁancy analysis to
several numerical integration formulas: the trapezoidal, Simpson's 1/3
rule, Simpson's 3/8 rule, and Weddle's rule, Frequency analysis is
applied to determine the stability of these formulas, compare their ac-
curacy, and compare their transfer functions with that of the ideal
integrator.,

L.l Numerical Integration

In the numerical integration of definite integrals, the range

of integration is divided into a convenient number of equal intervals,

pres

and the values of the integrand are defined only at the ends of these inter- -

vals, Essentially this is the same as sampling (or impulse modulating)
the integrand, Let the distance between samples be T, To obtain an
approximate value of the integral we may determine an nth order polynomial
that passes through n+ 1 c:frlthe sampled points and integrate the poly-
nomial over the corresponding range, repeating the process until the com-

plete range of the original integral has been covered. If the sampled

" points are joined by straight lines, (approximation by a first order of

polynomial) the resulting integration formula is lnown as the trapesoidal
rule (each interval of the integrand is approximated by a trapesoid).
Joining the points in each group of three sampled points by a parabola
leads to an integration formula known as Simpson's 1/3 rule. If the

points in each group of four sampled points are joined by a cubic curve, we
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get Simpson's 3/8 rule, The trapezoidal rule and Simpson's 1/3 rule
are quite widely lmown and used, but there is another one, called Wod&le'a
rule, that is used to obtain great accuracy. Joining the points in each group
of seven sampled points by a sixth order polynomial leads to Weddle's rule.
In each case the range of integration should be divided into an integral
multiple of "n* intervals, For example, to use Weddle's rule, the range
of integration should be divided into 6, 12, 18......equal intervals,

In what follows we shall designate the transfer functidn of an
ideal integrator as H(s): Thus,

H(s) = 3 (4-1)

with which the approximate integration formulas will be compared.

4,11 Trapezoidal Rule

Using the trapeszoidal rule the definite integral,

% .
o(t) = i 1(x) dx - (L-2)

o

may be approximated by,

o;(t) = g[[ 1(t) + i(t - r)] + [1(1-. -7+ i(t - 2r)]+......
(L-3)
The Laplace transform of (L4-3) is

0,(s) =§- [(1+ ) (1407 e 7T, L) ] I(s),

(L=k)
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‘>
So the transfer function is

0 -sT
Wy(s) = -ﬁ-:-), =3 Lo (L=5)

1-e2

A little algebra shows that for 8 = J‘.

W .
‘111%3' = ;2 cot %’2 (4=6)

4.12 Simpson's 1/3 Rule

Using Simpson's 1/3 rule the definite integral (4-2) may be
approximated by

0,(t) =§ { [i(t) +l(t -1+ 4i(t - 2T)]+

[i(t - 27) + Li(t - 3T) + 1(t - 4D) ]+ ....... } (k1)

The Laplace transform of (L-8) is

0,(s) =§ 1(s) (1 +he®T 4 o '2°T) (14- 28T 4 o "l‘ST+,,,

(4-8)

or,

-

e - T
R T RO

PPN P

T

b -
W i



Report R-225 ~73=-

Therefore; ths transfer function for Simpson's 1/3 rule is

0,(s) -sT -2s7
W = TGy = 3 1+11;e = . (L-10)

Dividing (4=10) by (L-1), letting s = j» and using some algebraic and
trigonometric manipulations leads to the ratio

W,(Jo)
2 — = %’! 2: OO; oT . (h'u)

b.13 Simpson's 3/8 Bule

The approximation tothe definite integral (L-2) that is obtained
using Simpson's 3/8 rule is

03(t) = ég{ [1(t) + H(t-T)+ 34(t-27) + 1i(t - 37 J+

[i(t -37) + 31(t - 4T) + 31(t - 5T) + i(t - 67) +]

r (L-12)
The Laplace tranaform of 03(1'.) is

‘ -38T , 68T
04(s) = ?;3 I(s) (1+30"T + 307287 .-3-9(14-. 854 o™° )

(4-13)

or,

1+ 30T, 347287, =307

l1-¢"%

0y(s) = ¢ 1(s) (4-14)

R
a

LT
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Hence for Simpson's 3/8 rule, the transfer function is

- 0,(s) -sT -28T -38T
. 3 37 1+3 3
e Ol e (k-15)

For s = jo, the ratio of WB(jm) to H(jo) is

WB(J“) _ 3T 1 + cos of (L-16)

HGe) ~ 7% ) (1 + 2 cos oT) tan%r )

A considerable amount of manipulation is required to obtain the above form,

L.l Weddlet's Rule

By Weddle's ruls the approximation of the definite integral
(L=2) is

o, (%) = % {[i(t) + 5i(t -1 + i(t - 2T) + 64(t - 37) +

i(t = 4T) + 51(¢t - ST) + i(t - 6'1')] + E(t - 6T) +
Si(t - 7T) + 4i(t - 8T) + 6i(t - 97) + 1(t - 10T) +
(L-17)

In the same manner as before, the transfarm of oh(t) is

1+5eT & o-25T | ¢ 38T .-har+ 5.-53‘1' . .-63'1‘

3T
0 =
h(') b L) 1 - .-60'1‘
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80 the transfer function for Weddlst!s rule is

°h(°) 37 146 o=8T , ¢=28T | go=38T .-hsr N 50'53'13, °-63'1'

Hh(s) = Tey T I 1 - 08!
(L-19)
By using a considerable amount of algebraic and trigonomstric manipulation,

we get for s = joi

Uh(.‘)m) _ 30T 1+ 3 cosmlT+ cos2 oT (L4-20)
Ty © 5 UrZcos ol smal )

4.2 Comparison of Numerical Integration Formnlas

With the above equations, we can get a complete picture of the
four approximation formulas in both the time and frequency domains,
Equations (4-5), (4-10), (4-15), and (L4-19) are the transfer functions
of each of the numerical integration processes and from these the stability
of each one can be determined, Let us now examine the denominator of each

transfer function, If the change of variable, 3 = o~°T

s 18 made, it is
easily seen that the magnitude of the roots of all the denominator poly-
nomials is unityy; however, there are no multiple roots. Therefore, each
of the numerical processes is stable,

Now we must consider the accuracy of each of the integration
formulas, Equations (4-6), (L-11), (4-16), and (h-'-zo) give the ratio of
the particular transfer function to that of the ideal integrator. In Figure
.1 these ratios are plotted as functions of »T, and we see clearly that,

of the four, Simpson's 1/3 rule and Weddle's rule are the best for wT

-~
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Trapezoidal Ruie

secesccne Simpson's 1/3 Rule

--------- Simpson's 3/8 Rule
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Figure 4.1 Comparison of Errors in Various Numerical Integration
Formulas
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below % radians, For example, suppose that we wish to integrate a sine
wave of radian frequency ®, and want the error to be less than 2,5%,

For each of the approximation formulas, how many samples must be taken
in a cycle of the sine wave? The answer can be obtained rapidly from
Figure 4,1 by noting the frequencies at which the amplitude ratios become

0.975 or 1,025, as listed below,

Trapezoidal o T = 30° 5 12 sa.méles/cycle
Simpson's 1/3 Rule o T= 75° 5 5.8 » "
Simpson's 3/8 Rule o T = 60° 3 6.0 ® "
Weddle's Rule . o T= 80° 3 L5 "

The number of samples per cycle is indicated for each rule, and this is
obtained by dividing 360° by the indicated angle,
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APPENDIX A
Proof that the Locus of Q(jw) Crosses the Real Axis either Normally
or Tangentially at @ = O and -
.

s$

Recall that Q(s) is given by the polynomial in e ',

Q(S) - bke-’r ; Lt bO =1 .

k=0
For s = 0 and ¥ ;j'%‘,' Q(s) is real because each term of the polynomial is
real. Since the locus is symmetrical about the real axis, it must cross the
real axis at these points.
In order to examine the behavior of the locus of Q(jw) at these

points, take the derivative of Q(s) with respect to s.

dqQ _S - -sT
a—s- » k? bk e .

k=1

Observer that %—3- is also a polynomial in .-a'l', therefore, it will also be

realfora-b‘and:j‘%.

Now consider the derivative in the neighborhood of s = o and
hd 39'. Ifg-g- # 0 at these points, we will prove that the Q-locus crosses
the real axjis perpendicularly. In the region of interest let ds = ) 5 ’
where J is a small increment of w. Since g must be real (and unequal
to zero as we have assmud), aQ = 4J |dQ] in order to J&t’ﬁfy this condition.
(Q.E.D.)

We must now discuss the case in which %g = O for 8 = 0 or i}?‘.
daQ

- Mrst observe that if & -9 Q must have a saddle po‘:lntl in the region

near the point where %%‘ = 0, Let us now make the change of variable,

: . |
1 For an excellent discussion of the behaviouf of functions near saddle
points, see Cuillemin, "The Mathematics of Circuit Analysis,®!Jofin Wiley.
and Sons, New York, 1949, pp. 298-302. iGN
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7 = e“ST, so that Q(s) becomes D(z) which is

D(z) = %m _ b, .

In the immediate vicinity of a saddle point, the function behaves as
-~ - p
D(z) Co + Cp(z zo)
in which the C's are constants, z, is the value of z at which the saddle
point occurs, and "p = 1" is the order of the saddle point. In this case,

2z, = *#1. In plotting the locus of D(z), we map the unit circle of the z-plane

into the D-plane (see Fig. A<l).

Consider the map in the vicinity
b4 4\ z-plane
of a possible saddle point (z = +1).
Observe that for z near zo,

L=z, " dz :j/dz{. There-

az fore, in the vicinity of a saddle
]
oint D(z) is
- +C 49 |d .
’i D(z) = C, D (+3 laz )
unit
circle

Fig. A=1 Unit circle in the z-plane that
maps into the D~plane

This readily shows that if "p" is even, the locus in the D-plane (or Q-plane)

is tangent to the real axis. If "p" is odd, the locus is normal to the real

Q.
|

axis.

We will now summarize the results obtained.

e 2

a) If %g F0fors =0 or :J'%Lythe locus of Q(jw) is normal to
the real axis for s = 0 for :j‘%lrespéctively.
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dQ
b) If 35 "0 fors=0or# :j'?, Q(s) has a saddle point at the

point where the derivative is zero. The change of variable, z = o-'T,

permits us to write, D(z) = C,* C:p (z - zo)p for z in the immediate vicinity
of the saddle point. If "p" is even, the Q-plane locus is tangent to the

real axis at the saddle point. If "p®™ is odd, the locus is normal to the

real axis.

e+ o = i i i e e
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APPENDIX B

Coding of Direct Regression Programs

The regression formula
B(t) = a I(t) + ag(t-r) + ooo + a T(tal) - b3(¢-T) - ... - bt -nt)
(B-1)

is to be programmed. Assume that the data and the constants are stored.

as follows:

These registers are not used in the second composite program.

Register Content Register Content
Noe (Constants) No. (Data)
4.0 a 1.0t 1(t)
Al 8 1.1 Tt - 1)
A.m a I.m T(t - mT)
B.1 -by 0.1 ¥(t -T)
B.2 'b2 002 3(t - 2T)
L] [ ] [ ] L 3 “}
B.n » O«n B(t - nT) X
R.OF Partial and !
final results s

<L A
. |



", SRR

Report R=225 ~§2-

The program will first be coded in two distinct parts: arithmetic and
manipulative. The arithmetic part performs, at each sampling point, the
arithmetic operations called for by the above regression formula and thus

calcul ates a new output value:

First Program, Arithmetic Portion®
Regts:ter (In(s::!;szgon) Result
P.1 ca Oe.n
P.2 mr B.n
P.3 ts R.0 > =5 3(t - nT)
P.L ca Oun-1-
P.5 mr B.n-1
P.6 ad R.0
?.7 ts R.0 — -bn_l‘UE. - (n-l)’ﬂ —bn“d(t - aT)
P.(4n-h) ca 0.1
etc. ‘ mr B.l
ad R.0 n
te R.0 — -;;_bk‘a(t - kT)
ca L.m
mr A.m
ad R.0
~ Do
P.(Une+3) ts R0 —{y ai(t-nl) -% b,B(t - kT)

1
The code is explaimed in Sc.D. Thesis "Treatment of Digital Control Systems
and Numerical Processes in the Frequency Domain," J.M. Salser, Lppendix 1.C,
791- 2, ‘ug\l‘t 1, 1951, M.I.T.

!ls
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Continued:
Register Content
No. (Instruction) Besult
Poh(n.ll) ca 1.0
etc. mr A.0
ad R.O
ts R.0 —45  o(t)
si selects the relevant output device
(as specified by the address section)
P.(LneLme5) rec R.0 records output, o(t), into output
device

It is clear that in this illustration each term of the regression equation

costs L instructions.

After the calculation of 6(t) at a particular sampling point

the data storage has to be rearranged for the next calculation: the present

3(t - nT) can be lost, all other ¥(t - kT) are to be stepped down one storage

register, and the new output value, S{t), just computed is put into 0.1;

the rearrangement of the 1(t - XT) is analogous, and the mew input value to

be-veceived goes into I.0. The coded program performing these manipulations

follows,

R e a-imnett el

DTN ae Topm
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FIRST PROGRAM, MANIPULATIVE PORTION

Register

Content

No. | (Instruction) Description
P.(lym+lin+6) ca O.n=1 moves’&[? - (n-l)g] into location

ts Oun of 5(t = nT) and Toses 3(t - nT)

ca 0.n=2 movesks't « (n=2)T| into

ts O.n=-l ot - (n-lﬁg location

ca 0.1 moves 6(t - T) into B(t - 2T)

ts 0.2 location

ca R.O moves 3(t) into 3(t - T)

ts 0.1 location

ca I.m-1 " moves ik - (m-l)@ into I(t-mT)

ts I.m location and loses I(t-mT)

ca I.0 moves 1(t) into 1(t - T) location

ts Iol

8i selects the relevant input device
(as specified by the address section)
and makes computer wait until device
receives a new input value

rd I.0 reads content of input device into

_i(t) location
P.(6me6n+6) sp P.1 returns control to beginning of

‘whole program.
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The manipulations are seen to cost 2 instructions per term of the regression
equation.

There are various ways in which this program can be streamlined.
The main considerations are storage and time. It is possible to save
substantial storage (with a sufficiently long regression equation) by
programming the 6 instructions (4 arithmetic and 2 manipulative) required
for each term only once and using them over and over for the various terms,
each time. In order to do so, a short program must be added to change the
appropriate address sections in the 6 instructions, which can thus be
made to compute a different term each time. This address-changing routine
materially lengtheﬁs the time of calculation, unless some very specialized
instructions or equipment is designed.

It aﬁpears more desirable to concentrate on reducing the time
requirements in most control applications, for storage is easier to increase
than speed, which seems to be the ultimate limitation in the applicability
of digital computers to controlling. In our ;resent example a notable
réduction in time, and also in storage, results from mixing the arithmetic
and manipulative steps and using a new instruction,1 ex, which exchénges
the content of the storage register specified by its address with the
content of the accumulator. The corresponding coded program, which still

uses the same constant and data storage, follows.

1 This instruction is actually used in Whirlwind applications on a temporary

basis. The code used for this instruction is ge to indicate its temporary
naturej final adoption of this instruction, however, is likely.
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SECOND PROGRAM, COMPOSITE

Register Content ‘ -
No. (Instructions) Results
P.1 ca O.n .
P,2 mr Ben
P.3 px Oun-1 __}p into Storages -bn3(t - nT),
partial result
&— into ac: Bt - (n-1)7)
Py ts O.n —1s puts oE - (n-1)T] into 3(t - nT)
locationi for ne sampling
AC still holds {t - (n-1)T
P.S IIII‘ B.n-l
Po6 ad 00n-1
P.7 ‘ex 0ine? into Storage: partial result
<} into AC: Tt - (n-2)T
P.8 ts On-l  _Jy B} - (n-2)T) to Bt - (n-1)F)
location
P.hn-? mr B.2
etce. ad 0.2
ex 0.1 —4-5 into Storage: partial result
«|— into AC: 3(t - T)
ts 0.2 —+43 ot - T) toB(t - 2T) location
mr B.l
ad 0.l
ex I.m —> into Storage; partial result
:bk'c(t - kT)
k=
4&+— into AC: T(t - mT)
mr A.m
ad I'.m
ex I.m-1 —3 into Stora_f'ez partial result
&~  into AC: TR - (m-1)1]
P.un+3 tsTem . 43 TR - (m=1)f to T(t-mT) location

—

Ml

e
- ]
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Register Content
" No. (Instructions) Result
. L i
Po(hn.lu’l‘a) mr A.2
ad I.2
ex I.1 — into Storage: partial result
— into AC: i(t - T)
te 1.2 13  T(t - T) into It - 2T) location
mr A.1
. ad I.1l
ts 0.l — into Storaget partial result
(note content of 0.1 has already
been used so that this register
is available)
si selects the }elevant input device
(as specified by the address section)]
and makes computer wait until device
receives a new input value
rd I.1 reads content of input device,
i(t) into I{t - T) location
mr A0
ad 0.1
ts 0.1 — into Storage: final result
T(t) into B(t - T) location
si selects the relevant output device
(as specified by the address section)
re 0.1 records output, 5{t), into output
device
P.(L4n+4mes6) sp P.1 returns control ‘to beginning of

program
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The above composite program is seen to result in considerable
saving of storage and time over the first program, which was given mainly
for illustrative purposes. It uses four instructions per term calculated
rather than 6, and even saves two data registers, I.0 and R.O., Register I.0
is not needed because the incoming data is immediastely used in the calculation
while register R.0 is superfluous because the partial results can be stored
in the register from which the data has just been removed for calculation.

One should note another important advantage of the second program:
to all practical extent, it eliminates computational delays entirely.

This is so, because all the computation is performed in advance of receiving
the input, and when the input value T(t) is received, there are only a few
instructions to be carried out in order to obtain the output, ¥(t). Only

direct regression programming has this advantage.

The tally of direct regression composite programming in terms of
m and n, the degree of numerator and denominator polynomials of the program
transfer function, is as follows:

Time requirement (in number of
instructions to be carried out

in sequence at each sampling) bm ¢ n + 6
Storage Requirements:
Constants méene¢l
Data m+n .
Instruction
Total bn ¢+ ln+ 6

bm+ bn ¢+ 7

The above tally is made under the assumption that none of the constants

are zero. If some constants are zero, the constant and program storage,

as well as the time, requirements will be reduced, but not the data storage
requirement. These more specific requirements are taken into account in

the summary of Art. 3.35.
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.. APPENDIX C

Coding of Cascaded Programs

The set of regression equations

’6‘1(1;) = 1(t) -dl’a'l(t-T)

’6’2('0) - ’6’1(t) ¢ 0231(t-‘1") -dz’é'z(t-'r)

A st =

R

e e

ott) = a [, 4(t) + €8y (¢-1)=4 3(6-1)]

is to be programmed.

L]

.

(c-1)

Assume the following arrangements of number storaget

Register ~ Content Register Content
No. (Constants) No. (Data)
D.1 -4 0.1 ‘6‘1(t-T)
F -
_ D.2 -d, 0.2 3,(t-1)
1 D.n -4 Oen 3t -T)
;" C.2 ¢ R.0 Partial Result
H C.n c
’ n
|
| A.O a
o

o e, = e s W i s

-
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In the coded program to follow it is assumed that none of the indicated

ey is zero; 1.6., m = n = 1, Variations are easily accounted for. The
program instructions follow.

Rengter .,A.,(Ing:nr::::m) Description

P.1 si selects input device and waits until

- device has new input value 1(t)

P.2 rd R.0 reads 1(t) into temporary location

P,3 ca 0.1

Pl mr D.1 4,8, (t - T) obtained

P.5 ad R.0 %;(t) obtained

P.6 ex 0.1 to Storages ¥, (t) into 3, (t-T)

location
) to ACs T (t - T)

P.7 mr C.2

P.8 ad 0.1 a'l(t) + 026'1(t - T) obtained

P.9 ts R.O to Storagﬁ: partial result

P.10 ca 0.2

P11 mr D,2

P.12 ad R.0 3,(t) obtained
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() Continued:
Register Content -
No. (Instruction) Description
P.(7n-8) ex O.n-1 —+ to Storage: ’O’n_l(t) into
eto. ‘B'n_l(t-'r) location
<“+— to AC: Gn_l(t-'r)
mr O.n
ad O.n-1 3 _1(t) ¢ ¢ &  (t-1) obtained
ts R.O -4 to Storaget partial result
ca O.n
mr D.n
ad R.O
l nr A.0 ‘~ 3(t) obtained
L ts O.n +4- to Storage: d(t) into F(t-T)
» location
si _ select output device
rc O.n records output, 3(t), into output
;' ‘ device
P.(7n*3) sp P.l returns control to beginning of
k » ’ Program '
Thus, if m = n - 1, the program is 7n ¢ 2 instructions long. Suppose
‘ m=n -2 and let c, = 0; then the sequence P.6 through P.12 above would
l‘ i be replaced by the following shorter sequ;nce P! .9 through P'.12.
| P'.9 ts 0.1 -~ —bH puts B‘i(t) into ‘dl(t-'r) location
d P" .10 ca 0,2
{; P'.11 mr D.2
? P'.12 ad 0.1 T,(t) obtained
\ ac
L
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Thus, each S - 0 saves 3 instructions.

The tally for cascade programming can now be written:

Time Requirements: 3m ¢+ bn ¢+ 5
Storage Requirements
Constants méen+l
Data n
Temporary 1
Instruction 3m+ n + 6
Total | lm ¢+ 6n « 8

Comparison of these requirements with those of other methods of programming
is done in Arto 30350
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APPENDIX D

Coding of Parallel Programs

The set of regression equations

'B‘l(t) - rl”i'(t) - dl'B'l(t - T}

Ty(t) = £I(t) - 4@ (t - T)
CROR fnT(t) -4 (t - T)
o(t) =

’6’1(t) f’é’z(t) ¢ e +’6‘n(t)

is to be programmed. Assume the following arrangement of number storaget

(D-1)

None of the constants can be zero. The program instructions follow.

Register Content Register Content
No, (Constants) No. Data
D.1 -4 0.1 ol(t -T)
D.?2 -d2 0.2 02(1: -T)
De.n -dn O.n on(t -T)
F.1l £, 1.0 i(t); also o(t)
F.2 f2
. A
F.n f 4
. ' n ‘
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Register Content
No. (Instruction _Descrintion
P.1 si selects input device and waits
until device has new input valuej
- 1(t)
P,2 rd 1.0 —»  reads I(t) into its assigned
storage register
P.3 ca 1.0
P4 mr F.
P.S ex 0.1 —»>  to Storage: fl?.'(t)
«4— to AC: 61(t -T)
P.6 mr D.1 .
P.7 ad 0.1
P.8 ts 0.1 —> to Storage: % (t)
P.9 ~ca 1.0
P.10 mr F.2
P11 ex 0.2 ~> to Storage: f£,I(t)
¢— to AC: Tt - 1T)
P,12 mr D.2
P.13 ad 0.2
P.1k ts 0.2 —4> to Storage: 6"2(t)
P.(6n=3) ca I.0
etc, mr F.n
ex O.n —1> to Storage: fnT(t) '
<«1+— to AC: 'G'n(t -7
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Register Content '
No. (Instructions) Description
ar D.n o
ad O.n
ts O.n —>  to Storage: 'o‘r"(t)
P.(6n+3) ad O.n-l 6,(t) ¢+ T, (t) obtained
ete. ad O.ne?2 etc.
L[] L]
ad 0.2
ad 0.1 %(t) obtained
P.(7n+2) ts 1.0 —>  to Storaget 7(t)
etc. ei selects output device
re I.0 records output, B(t) into
output device
P.(7ne5) sp P.1 returns control to beginning of
program

In parallel programming none of the indicated constants can be

zero, and the only possible saving is when several constants have the same

value. Even then the program itself is not affected materially.

The tally for parallel programming follows:

Time Requirement

Storage Requirementat

Constants
Data
Instructions

Total

mes
2n

nel
Zn0§
10n ¢+ 6

Further discussion of these requirements is left to Art. 3.35.



